DOI: 
10.22389/0016-7126-2022-981-3-35-43
1 Grischchenko M.Yu.
2 Mikhaylyukova P.G.
Year: 
№: 
981
Pages: 
35–43

Lomonosov Moscow State University (MSU)

1, 
2, 
Abstract:
The paper deals with juxtaposing the results of the in-situ (ground-based) temperature measurements and those of temperature calculations based on TIRS thermal satellite images (Landsat 8 satellite) for Kunashir island (Great Kuril ridge). Ground measurements were recorded using iButton temperature sensors installed at a height of 1,5–2 m from the earth’s surface (including under the forest canopy), thus they fixed the air temperature. From satellite images of 100 m spatial resolution, the values of the land surface temperature (LST) were calculated through the method developed by NASA. A strict dependence of the accuracy of determining these indicators according to Landsat 8 data on the landscape features of the area was not revealed. However, the minimal values of the difference are characteristic of the areas with dense woody vegetation, and the maximal ones are confined to settlements, the vicinity of solfataric fields and economic facilities of environmental protection. As a result of the regression analysis, a good connection was established between satellite and ground measurements. The standard error was 0,95. The determination coefficient is 0,99, and it confirms the high accuracy of temperature determination using satellite images.
This study was financially supported by the Russian Foundation for Basic Research within the framework of the scientific project No. 18-05-00715 А.
References: 
1.   Grishchenko M. Yu., Chernulich K. K. Issledovanie svyazi nazemnykh i kosmicheskikh temperaturnykh dannykh na primere ostrovov Vrangelya i Kunashir. Izv. vuzov. Geodeziya i aerofotos"emka, 2019, Vol. 63, no. 5, pp. 566–575.
2.   Konstantinov P. I., Grishchenko M. Yu., Varentsov M. I. Kartografirovanie ostrovov tepla gorodov Zapolyar'ya po sovmeshchennym dannym polevykh izmerenii i kosmicheskikh snimkov na primere g. Apatity (Murmanskaya oblast'). Issledovanie Zemli iz kosmosa, 2015, no. 3, pp. 27–33.
3.   Kornienko S. G. Izuchenie transformatsii tundrovogo napochvennogo pokrova na uchastkakh pirogennogo porazheniya po dannym sputnikov Landsat. Kriosfera Zemli, 2017, Vol. XXI, no. 1, pp. 93–104.
4.   Stankevich S. A., Filippovich V. E., Lubskii N. S., Krylova A. B., Kritsuk S. G., Brovkina O. V. Interkalibratsiya metodov vosstanovleniya termodinamicheskoi temperatury poverkhnosti urbanizirovannoi territorii po materialam teplovoi kosmicheskoi s"emki. Ukrainskii zhurnal distantsionnogo zondirovaniya Zemli, 2015, Vol. 7, pp. 12–21.
5.   Atmospheric Correction Parameter Calculator NASA. URL: tmcorr.gsfc.nasa.gov (accessed: 11.02.2021).
6.   Cristobal J., Jimenez-Munoz J. C., Prakash A., Mattar C., Skokovic D., Sobrino J. A. (2018) An Improved Single-Channel Method to Retrieve Land Surface Temperature from the Landsat-8 Thermal Band. Remote sensing, Volume 10, no. 431, 14 p. DOI: 10.3390/rs10030431.
7.   Duan S.-B., Li Z.-L., Wang C., Zhang S., Tang B.- H., Leng P., Gao M.-F. (2018) Land-surface temperature retrieval from Landsat 8 single-channel thermal infrared data in combination with NCEP reanalysis data and ASTER GED product. International Journal of Remote Sensing, no. 40 (4), pp. 1–16. DOI: 10.1080/01431161.2018.1460513.
8.   Kafer P. S., Rolim S. B. A., Iglesias M. L., da Rocha N. S., Diaz L. R. (2019) Land Surface Temperature Retrieval by LANDSAT 8 Thermal Band: Applications of Laboratory and Field Measurements. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Volume 12, no. 7, pp. 2332–2341. DOI: 10.1109/JSTARS.2019.2913822.
9.   Landsat 7 Data Users Handbook. URL: clck.ru/cAGXs (accessed: 11.02.2021).
10.   Mathew A., Khandelwal S., Kaul N. (2018) Analysis of diurnal surface temperature variations for the assessment of surface urban heat island effect over Indian cities. Energy and Buildings, no. 159, pp. 271–295.
11.   Stahl K., Moore M. D., Floyer J. A., Asplin M. G., McKendrya I. G. (2006) Comparison of approaches for spatial interpolation of daily air temperature in a large region with complex topography and highly variable station density. Agricultural and Forest Meteorology, no. 139, pp. 3–4.
12.   Using the USGS Landsat Level-1 Data Product. URL: clck.ru/cAM4Y (accessed: 11.02.2021).
13.   Varentsov M. I., Grishchenko M. Y., Wouters H. (2019) Simultaneous assessment of the summer urban heat island in moscow megacity based on in situ observations, thermal satellite images and mesoscale modeling. Geography, Environment, Sustainability, Volume 12, no. 4, pp. 74–95.
14.   Wang L., Lu Y., Yunlong Y. (2019) Comparison of Three Algorithms for the Retrieval of Land Surface Temperature from Landsat 8 Images. Sensors, Volume 19, no. 22,
15.   Yang H., Zhang L.F., Zhang X., Fang C., Tong Q. (2011) Algorithm of emissivity spectrum and temperature separation based on TASI data. Journal of Remote Sensing, Volume 15, no. 6, pp. 1242–1254.
Citation:
Grischchenko M.Yu., 
Mikhaylyukova P.G., 
(2022) Comparing ground-based and satellite data to study the spatial variability of the natural area’s thermal field (case of Kunashir island, Great Kuril ridge, Sakhalin oblast, RF). Geodesy and cartography = Geodezia i Kartografia, 83(3), pp. 35–43. (In Russian). DOI: 10.22389/0016-7126-2022-981-3-35-43
Publication History
Received: 24.03.2021
Accepted: 17.02.2022
Published: 20.04.2022

Content

2022 March DOI:
10.22389/0016-7126-2022-981-3