UDC: 
DOI: 
10.22389/0016-7126-2022-983-5-53-64
1 Yurchenko V.I.
Year: 
№: 
983
Pages: 
53-64

ICC Geograd, LLC

1, 
Abstract:
Despite the variety of flight task preparation programs represented in the market and introduction of new standards of technical requirements in topographic aerial photography, the design issues of the latter are not worked out in detail; the criteria of pixel size selection on the ground are not defined. The necessity of considering all the input data i.e. customer requirements to the outcome product, characteristics of the used technical means of flight support, navigation and photographic equipment, the impact of external factors of the photographic environment was noted in the paper. Within the framework of the unified methodical approach to the choice of the pixel size in the design, the use of theoretical and physical similarity criteria is proposed. The method provides analyzing aerial photography’s all external and internal factors complex interaction and consideration of their affecting the result. Physical criteria, i.e. stability of flight, image quality of images, and depth of depicted high-altitude objects sharpness are considered in detail. The theoretical justification of determining the similarity coefficients is given. It analyzes the changes in coefficients depending on focal length, camera exposure parameters, etc. The method of taking into account physical factors and estimation of design accuracy is presented. The software implementation of the method is described. The practical example of multi-factor data analysis for selection of pixel size for designing large-scale aerial photography of built-up area is considered. The relevance of determining the coefficients directly in the course of aerial survey is shown.
References: 
1.   Anikeeva I.A. (2021) Method of numerical estimating aerial images indicators quality for mapping purposes. Geodezia i Kartografia, 82(2), pp. 29-37. (In Russian). DOI: 10.22389/0016-7126-2021-968-2-29-37.
2.   Anikeeva I. A. Obosnovanie dopustimykh razmerov pikselya na mestnosti i parametrov szhatiya aero- i kosmicheskikh izobrazhenii, poluchaemykh dlya tselei kartografirovaniya. Vestnik of SSUGT, 2019, Vol. 24, no. 2, pp. 109–130. DOI: 10.33764/2411-1759-2019-24-2-109-130.
3.   Anikeeva I.A. (2021) Assessment of recommended and acceptable image quality indicators’ values, based on materials, obtained with various aerial surveying systems for mapping purposes . Geodezia i Kartografia, 82(9), pp. 30-40. (In Russian). DOI: 10.22389/0016-7126-2021-975-9-30-40.
4.   Babashkin N.M., Kadnichanskiy S.A., Kuchinskiy Yu.I., Nekhin S.S. (2012) Choosing Aerial Photography Parametres For Modern Aerial Topographic Surveys . Geodesy and Cartography, 73(Special issue), pp. 161–164. (In Russian). DOI: 10.22389/0016-7126-2012-161-164.
5.   Bezmenov V.M., Safin K.I. (2021) Researching the accuracy of determining spatial coordinates through processing images from drones. Geodezia i Kartografia, 82(1), pp. 45-55. (In Russian). DOI: 10.22389/0016-7126-2021-967-1-45-55.
6.   Born M., Vol'f E. Osnovy optiki. Per. s angl. S. N. Breusa, A. I. Golovashkina, A. A. Shubina; Pod red. G. P. Motulevich. – 2-e izd., ispr. Moskva: Nauka, 1973, 719 p.
7.   Kadnichanskiy S.A. (2016) Reasoning of optimum parameters of digital aerial cameras. Geodezia i Kartografia, (6), pp. 49-56. (In Russian). DOI: 10.22389/0016-7126-2016-912-6-49-56.
8.   Landsberg G. S. Optika. Moskva: Fizmatlit, 2003, 848 p.
9.   Lobanov A.N. Fotogrammetriya. M.: Nedra, 1984, 552 p.
10.   Mitchel E. Fotografiya. Per. s angl. kand. fiz.-mat. nauk M. V. Fominoi; Pod red. kand. iskusstvovedeniya A. G. Simonova. Moskva: Mir, 1988, 420 p.
11.   Rusyaeva E. A. Teoriya matematicheskoi obrabotki geodezicheskikh izmerenii: Ucheb. posobie. – Ch. I. Teoriya oshibok izmerenii. Moskva: MIIGAiK, 2016, 56 p.
12.   Yurchenko V.I. (2021) Matters of choosing the pixel size in topographic aerial photography. Geodezia i Kartografia, 82(11), pp. 27-39. (In Russian). DOI: 10.22389/0016-7126-2021-977-11-27-39.
13.   Yurchenko V. I. Osobennosti proektirovaniya aerofotos"emochnykh rabot s bespilotnogo vozdushnogo sudna. Vestnik of SSUGT, 2021, Vol. 26, no. 2, pp. 65–81. DOI: 10.33764/2411-1759-2021-26-2-65-81.
14.   Smith D. L., Abdullah Q. A., Maune D. F., Heidemann H. K. (2015) New ASPRS Positional Accuracy Standards for Digital Geospatial Data Released. Photogrammetric Engineering and Remote Sensing, no. 81, I.4, pp. 1073–1085. DOI: 10.14358/PERS.81.3.A1-A26.
15.   Wang Z., Bovik A.C., Sheikh H. R., Simoncelli E. P. (2004) Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, Volume 13, no. 4, pp. 600-612. DOI: 10.1109/TIP.2003.819861.
Citation:
Yurchenko V.I., 
(2022) Consideration of physical factors at planning topographic aerial photography. Geodesy and cartography = Geodezia i Kartografia, 83(5), pp. 53-64. (In Russian). DOI: 10.22389/0016-7126-2022-983-5-53-64
Publication History
Received: 14.01.2022
Accepted: 19.04.2022
Published: 20.06.2022

Content

2022 May DOI:
10.22389/0016-7126-2022-983-5