ISSN 0016-7126 (Print)
ISSN 2587-8492 (Online)
1. Myasnikov V. V. Opisanie izobrazhenii s ispol'zovaniem model'no-orientirovannykh deskriptorov. Komp'yuternaya optika, 2017, no. 41 (6), pp. 888–896. DOI: 10.18287/2412-6179-2017-41-6-888-896. |
2. Sergeev V. V., Yuz'kiv R. R. Parametricheskaya model' avtokorrelyatsionnoi funktsii kosmicheskikh giperspektral'nykh izobrazhenii. Komp'yuternaya optika, 2016, no. 40 (3), pp. 416–421. |
3. Sochava V.B. Vvedenie v uchenie o geosistemah. Novosibirsk: Nauka, 1978, 320 p. |
4. Bengio Y., LeCun Y. (2007) Scaling learning algorithms towards AI. Large-scale kernel machines, no. 34 (5), pp. 1-41. |
5. Chollet F. (2017) Xception: Deep learning with depthwise separable convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition. Honolulu, USA. pp. 1251-1258. DOI: 10.1109/CVPR.2017.195. |
6. Ioffe S., Szegedy C. (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv: 1502.03167 [cs. LG]. URL: arxiv.org/pdf/1502.03167.pdf (accessed: 26.04.2022). |
7. Jaakkola T., Haussler D. (1998) Exploiting generative models in discriminative classifiers. Advances in neural information processing systems, no. 11, pp. 487Р493. |
8. LeCun Y., Bengio Y., Hinton G. (2015) Deep learning. Nature, no. 521 (7553), pp. 436. DOI: 10.1038/nature14539. |
9. S?nchez J., Perronnin F., Mensink T., Verbeek J. (2013) Image classification with the Fisher vector: theory and practice. International journal of computer vision, no. 105 (3), pp. 222Р245. DOI: 10.1007/s11263-013-0636-x. |
10. Schowengerdt R. A. (2006) Remote sensing: models and methods for image processing, 3 ed. Academic Press, Orlando, 843 p. |
11. Urbanowicz R. J., Meeker M., La Cava W., Olson R. S., Moore J. H. (2018) Relief-based feature selection: introduction and review. Journal of biomedical informatics, no. 85, pp. 189Р203. DOI: 10.1016/j.jbi.2018.07.014. |
12. Yamashkin S. A., Yamashkin A. A., Zanozin V. V., Radovanovic M. M., Barmin A. N. (2020) Improving the еfficiency of deep learning methods in remote sensing data analysis: geosystem approach. IEEE Access, no. 8, pp. 179516Р179529. DOI: 10.1109/ACCESS.2020.3028030. |
13. Zhang W., Tang P., Zhao L. (2019) Remote sensing image scene classification using CNN-CapsNet. Remote Sensing, Volume 11, no. 494, DOI: 10.3390/rs11050494. |
(2022) Classification of metageosystems using machine learning models. Geodesy and cartography = Geodezia i Kartografia, 83(7), pp. 25-38. (In Russian). DOI: 10.22389/0016-7126-2022-985-7-25-38 |