DOI: 
10.22389/0016-7126-2022-987-9-14-20
1 Mezhenova I.I.
2 Popadyev V.V.
Year: 
№: 
987
Pages: 
14-20

Center of Geodesy, Cartography and SDI

1, 
2, 
Abstract:
The solution of the geodetic boundary value problem for determining the anomalous potential from gravity measurements in the spherical approximation, taking into account the relief and compression, was developed in sufficient detail in 1960 and is also based on the results of G. G. Stokes. Flattening of the reference surface was taken into account by D. V. Zagrebin in several works dated 1940–1970; in 1956 M. S. Molodensky proposed a simpler method for an oblate ellipsoid, based on the already known one for a sphere. It turned out that at the very beginning of developing the mentioned solution, an error was made when obtaining the derivative of the reciprocal distance between two points on the ellipsoid in the direction of the outward normal; later it was repeated in issue 131 of the Proceedings of the TsNIIGAiK. That inaccuracy did not influence the conclusions of V. V. Brovar in 1996 and 1999, where the relief was added to the consideration of compression. This solution of Molodensky’s problem, taking the compression into account, was seldom used, and that is probably why the mistake went unnoticed. V. V. Popadyev saw it and found the correct expression for the mentioned derivative, I. I. Mezhenova adapted subsequent conclusions for the gravity disturbances.
The research was done within the framework of the Federal project «Support, Development and Using GLONASS System» due to the RF State program of «Russian Space Activities» in 2021–2030, No 1210806000081-5.
References: 
1.   Brovar V. V., Brovar B. V. Vysokotochnyi metod opredeleniya vneshnego vozmushchayushchego potentsiala real'noi Zemli. Nauchno-tekhnicheskii sbornik po geodezii, aerokosmicheskim s"emkam i kartografii. Fizicheskaya geodeziya, Moskva: TsNIIGAiK, 1999, pp. 14–54.
2.   Zagrebin D. V. Teoriya regulyarizovannogo geoida. M. – L.: Izd-vo AN SSSR, 1952, 223 p.
3.   Molodenskii M. S. Reshenie zadachi Stoksa s otnositel'noi pogreshnost'yu poryadka kvadrata szhatiya Zemli. Tr. TsNIIGAiK, 1956, 112. pp. 3–8.
4.   Molodenskij M.S., Eremeev V.F., Yurkina M.I. Metody izucheniya vneshnego gravitacionnogo polya i figury Zemli. Tr. CNIIGAiK, 1960, 131. 251 p.
5.   Yurkina M. I. O rabotakh po teorii figury Zemli s sokhraneniem otnositel'noi tochnosti poryadka zemnogo szhatiya. Nauchno-tekhnicheskii sbornik po geodezii, aerokosmicheskim s"emkam i kartografii. Fizicheskaya geodeziya. Kn. 1, Moskva: TsNIIGAiK, 1996, pp. 66–87.
6.   Brovar V., Kopeikina Z., Pavlova M. (2001) Solution of the Dirichlet and Stokes exterior boundary problems for the Earth`s ellipsoid. Journal of Geodesy, no. 74, pp. 767–772. DOI: 10.1007/s001900000100.
7.   Claessens S. J. (2006) Solutions to ellipsoidal boundary value problems for gravity field modelling. PhD thesis. 244 p.
8.   Huang J., Veronneau, M., Pagiatakis S. D. (2003) On the ellipsoidal correction to the spherical Stokes solution of the gravimetric geoid. Journal of Geodesy, no. 77, pp. 3–4. DOI: 10.1007/s00190-003-0317-6.
9.   Martinec Z., Grafarend E. W. (1997) Solution to the Stokes Boundary-Value Problem on an Ellipsoid of Revolution. Studia Geophysica et Geodaetica, no. 41, pp. 103–129. DOI: 10.1023/A:1023380427166.
10.   Sjöberg L. (2004) The ellipsoidal corrections to the topographic geoid effects. Journal of Geodesy, no. 77, pp. 804–808. DOI: 10.1007/s00190-004-0377-2.
Citation:
Mezhenova I.I., 
Popadyev V.V., 
(2022) Solution of Molodensky’s boundary-value problem for gravity disturbances with a relative error the Earth`s flattening square (second) order. Geodesy and cartography = Geodezia i Kartografia, 83(9), pp. 14-20. (In Russian). DOI: 10.22389/0016-7126-2022-987-9-14-20
Publication History
Received: 25.09.2020
Accepted: 01.09.2022
Published: 20.10.2022

Content

2022 September DOI:
10.22389/0016-7126-2022-987-9