UDC: 
DOI: 
10.22389/0016-7126-2023-1000-10-12-21
1 Kaftan V.I.
2 Tatarinov V.N.
3 Shevchuk R.V.
4 Manevich A.I.
5 Kaftan A.V.
Year: 
№: 
1000
Pages: 
12-21

RAS Geophysical Center

1, 
2, 
3, 
4, 

United Energy Company, JSC (JSC “UNECO”)

5, 
Abstract:
The authors propose a field control of GNSS equipment precision characteristics methodology for recording sub-centimeter movements of the Earth`s surface at geodynamic observations of tectonically moderate areas activity. The factors influencing the accuracy of GNSS measurements are analyzed. The theoretical aspects of developing measuring equipment field control methods are presented. Testing of the devices was carried out in the course of surveys on the Nizhne-Kanskiy massif geodynamic range in Krasnoyarsk krai in 2020–2022. The experiment was made with two-system GNSS facilities of geodesic class (5 to 6 sets). The results show that the proposed methodology of the used tools accuracy characteristics field control enables detecting incorrect nominal parameters of measuring instruments. In this case the parameters of the receivers` antennas are well coordinated with each other. The exactness of control characteristics in plan is at the level of 1,3–2,5 mm, in height – 2,5 mm. It was revealed that the height of the actual phase center of Grant_G3T and MarAnt+ antennas differ from the manufacturer`s declared passport data
This work was conducted in the framework of budgetary funding of GC RAS, adopted by the Ministry of Science and Higher Education of the Russian Federation.
References: 
1.   Belov S. V., Morozov V. N., Tatarinov V. N., Kamnev E. N., Khammer I. Izuchenie ctroeniya i geodinamicheskoi evolyutsii Nizhnekanskogo massiva v svyazi s zakhoroneniem vysokoaktivnykh radioaktivnykh otkhodov. Geoekologiya, 2007, no. 3, pp. 248–266.
2.   Galaganov O.N., Guseva T.V., Krupennikova I.S. Sopostavlenie dannykh GLONASS i GPS-izmerenii sposobom differentsial'nogo pozitsionirovaniya v rezhime statika pri reshenii geodinamicheskikh zadach. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, no. 4, pp. 28–37.
3.   Dorofeev A. N., Bol'shov L. A., Linge I. I., Utkin S. S., Savel'eva E. A. Strategicheskii master-plan issledovanii v obosnovanie bezopasnosti sooruzheniya, ekspluatatsii i zakrytiya punkta glubinnogo zakhoroneniya radioaktivnykh otkhodov. Radioaktivnye otkhody, 2017, no. 1, pp. 32–41.
4.   Kaftan V.I., Tatarinov V.N., Manevich A.I., Prusakov A.N., Kaftan A.V. (2020) Accuracy estimation of GNSS observations at a reference basis as a means of testing the measuring equipment of local geodynamic monitoring. Geodezia i Kartografia, 81(7), pp. 37-46. (In Russian). DOI: 10.22389/0016-7126-2020-961-7-37-46.
5.   Laverov N. P., Velichkin V. I., Kochkin B. T., Mal'kovskii V. I., Petrov V. A., Pek A. A. Kontseptsiya otsenki bezopasnosti khranilishch otrabotavshikh yadernykh materialov, razmeshchaemykh v kristallicheskikh porodakh. Geoekologiya, 2010, no. 3, pp. 195–206.
6.   Manevich A. I., Shevchuk R. V., Kaftan V. I., Tatarinov V. N., Zabrodin S. M. Razvitie seti GNSS-nablyudenii v predelakh Nizhne-Kanskogo massiva s ispol'zovaniem skal'nykh geodezicheskikh tsentrov. Seismicheskie pribory, 2022, Vol. 58, no. 4, pp. 111–129. DOI: 10.21455/si2022.4-7.
7.   Serebryakova L.I., Gorobets V.P., Kozlova L.U., Sermyagin R.A. (2006) On the question of assessing the accuracy of satellite definitions performed at geodynamic sites. Geodesy and Cartography, 67(6), pp. 34–39.
8.   Tatarinov V. N., Bugaev E. G., Tatarinova T. A. K otsenke deformatsii zemnoi poverkhnosti po dannym sputnikovykh nablyudenii. Gornyi zhurnal, 2015, no. 10, pp. 27–32.
9.   Khalimonchik D. A., Silaeva A. A., Panzhin A. A. Issledovanie sovremennykh dvizhenii zemnoi kory Kol'skogo poluostrova i Karelii po dannym sputnikovykh nablyudenii. Interekspo GEO-Sibir', 2022, Vol. 1, pp. 38–44. DOI: 10.33764/2618-981X-2022-1-38-44.
10.   Blobfeld M., Zeitlhöfler J., Rudenko S., Dettmering D. (2020) Observation-Based Attitude Realization for Accurate Jason Satellite Orbits and Its Impact on Geodetic and Altimetry Results. Remote Sensing, no. 12, pp. 682. DOI: 10.3390/rs12040682.
11.   Chatzinikos M., Fotiou A., Pikridas C. The effects of the receiver and satellite antenna phase center models on local and regional GPS networks.. Conference: 19th International Symposium on Modern Technologies, Education and Professional Practice in Geodesy and Related FieldsAt: Sofia, Bulgaria V: Conf. Proc., pp. 213–223.
12.   Dilssner F., Springer T., Flohrer C., Dow J. (2010) Estimation of phase center corrections for GLONASS-M satellite antennas. Journal of Geodesy, no. 84 (8), pp. 467–480. DOI: 10.1007/s00190-010-0381-7.
13.   Dvulit P., Savchuk S., Sosonka I. (2021) Accuracy estimation of site coordinates derived from GNSS-observations by non-classical error theory of measurements. Geodesy and Geodynamics, no. 12, pp. 347–355. DOI: 10.1016/j.geog.2021.07.005.
14.   Mader G. L. (1999) GPS Antenna Calibration at the National Geodetic Survey. GPS Solutions, no. 3, pp. 50–58. URL: https://clck.ru/36Bv6v (accessed: 28.03.2023).
15.   Montenbruck O., Steigenberger P., Villiger A., Rebischung P. (2022) On the relation of GNSS phase center offsets and the terrestrial reference frame scale: a semi-analytical analysis. Journal of Geodesy, no. 96 (90), DOI: 10.1007/s00190-022-01678-x.
16.   Nyberg S., Kallio U., Koivula H. (2013) GPS monitoring of bedrock stability at Olkiluoto nuclear waste disposal site in Finland from 1996 to 2012. Journal of Geodetic Science, no. 3, pp. 121-128. DOI: 10.2478/jogs-2013-0017.
17.   Qu X., Shu B., Ding X., Lu Y., Li G., Wang L. (2022) Experimental Study of Accuracy of High-Rate GNSS in Context of Structural Health Monitoring. Remote Sensing, no. 14, DOI: 10.3390/rs14194989.
18.   Schmid R., Dach R., Collilieux X., Jäggi A., Schmitz M., Dilssner F. (2015) Absolute IGS antenna phase center model igs08.atx: status and potential improvements. Journal of Geodesy, no. 90, pp. 343–364. DOI: 10.1007/s00190-015-0876-3.
19.   Schmid R., Rothacher M., Thaller D., Steigenberger P. (2005) Absolute phase center corrections of satellite and receiver antennas. Impact on GPS solutions and estimation of azimuthal phase center variations of the satellite antenna. GPS Solutions, no. 9 (4), pp. 283–293.
20.   Sutyagin I., Tatarnikov D. (2020) Absolute robotic GNSS antenna calibrations in open field environment. GPS Solutions, no. 24 (4), pp. 92. DOI: 10.1007/s10291-020-00999-8.
Citation:
Kaftan V.I., 
Tatarinov V.N., 
Shevchuk R.V., 
Manevich A.I., 
Kaftan A.V., 
(2023) Experimental study of the field methodology for assessing the accuracy of GNSS measurements. Geodesy and cartography = Geodezia i Kartografia, 84(10), pp. 12-21. (In Russian). DOI: 10.22389/0016-7126-2023-1000-10-12-21