UDC: 
DOI: 
10.22389/0016-7126-2023-1000-10-2-11
1 Kornilov Yu.N.
2 Romanchikov A.Yu.
3 Bogolyubova A.A.
Year: 
№: 
1000
Pages: 
2-11

Empress Catherine II Saint Petersburg Mining University

1, 
2, 
3, 
Abstract:
Active development of digital cameras and computer software has made close-range photogrammetry an extremely popular way to solve various engineering tasks, in particular, to control deformations of constructions and mining objects. Automated measurement of tie points enables reviving traditional techniques of deformation measurement through single shot photogrammetric approach (a zero basis, pseudo parallaxes) at a qualitatively new level. The paper deals with the contour mapping equal displacement method adaptation offered by the first author in the 1970s for processing in Agisoft Metashape. It is proposed to create a virtual basis for two single multi-temporal images by adding a matrix of empty pixels to them. This enables processing those as stereo pair, building virtual point clouds and altitude matrices. In order to test the technique, the authors considered the deflection deformation of various objects under lab conditions and shot their photos with a non-metric camera before and after loading. The obtained images were processed in Metashape, and then the above products were created and contours of equal deformations were plotted. It was found out that the accuracy of displacement value estimation with this method exceeds the spatial resolution of the images more than three times. The technology is applicable for objects deformations monitoring shifting mainly in a single plane, in future it is planned to test it in field at studying slope processes
References: 
1.   Val'kov V. A., Val'kova E. O., Mustafin M. G. Metodika utochneniya tsifrovykh modelei rel'efa otkrytykh gornykh vyrabotok po materialam lazernogo skanirovaniya i aerofotos"emki. Marksheideriya i nedropol'zovanie, 2023, no. 3 (125), pp. 40–52.
2.   Valkov V.A., Vinogradov K.P., Valkova E.O., Mustafin M.G. (2022) Creating highly informative rasters based on laser scanning and aerial photography data. Geodezia i Kartografia, 83(11), pp. 40-49. (In Russian). DOI: 10.22389/0016-7126-2022-989-11-40-49.
3.   Gusev V. N., Vystrchil M. G. Sposob opredeleniya vertikal'nykh sdvizhenii i deformatsii s pomoshch'yu lazerno-skaniruyushchikh sistem. Zapiski Gornogo instituta, 2012, Vol. 199, pp. 245–248.
4.   Kornilov Yu. N. Analiz sostoyaniya deformiruyushchegosya ob"ekta putem obrabotki snimkov na stereoavtografe. Marksheiderskoe delo i geodeziya: Mezhvuz. sb. nauch. tr, 1977, 4. pp. 75–80.
5.   Kornilov Yu. N., Artem'ev P. A., Zvereva O. V. Opredelenie deformatsii ob"ektov fotogrammetricheskim metodom s ispol'zovaniem TsFS «Photomod». Zapiski Gornogo instituta, 2013, Vol. 206, pp. 53–55.
6.   Mustafin M. G., Val'kova E. O., Val'kov V. A. Puti razvitiya marksheidersko-geodezicheskikh nablyudenii za ustoichivost'yu bortov kar'erov. Marksheiderskii vestnik, 2022, no. 3 (148), pp. 13–18.
7.   Popov B. A., Khakhulina N. B., Netrebina Yu. S. Primenenie fotogrammetricheskikh sposobov dlya geotekhnicheskogo monitoringa avariinykh zdanii i sooruzhenii. Nauchnyi zhurnal stroitel'stva i arkhitektury, 2021, no. 3 (63), pp. 23–36. DOI: 10.36622/VSTU.2021.63.3.002.
8.   Sharafutdinova A.A., Bryn M.Ya. (2023) Point cloud registration using the quasi-Newton method. Geodezia i Kartografia, 84(2), pp. 2-11. (In Russian). DOI: 10.22389/0016-7126-2023-992-2-2-11.
9.   Albert J., Maas H.-G., Schade A., Schwarz W. (2002) Pilot studies on photogrammetric bridge deformation measurement. IV Symposium on Geodesy for Geotechnical and Structural Engineering (May 21–24, Berlin, Germany). pp. 1–8.
10.   Aliansyah Z., Shimasaki K., Senoo T., Ishii I., Umemoto S. (2021) Single-Camera-Based Bridge Structural Displacement Measurement with Traffic Counting. Sensors, no. 21 (13), pp. 4517. DOI: 10.3390/s21134517.
11.   Bryś H., Ćmielewski K., Gołuch P., Kowalski K. (2011) The system of automatic laser plumb-line for monitoring a heavy dam wall. Reports on Geodesy, no. 1/90, pp. 41–49.
12.   Gołuch P., Ćmielewski K., Kuchmister J. (2012) Wykorzystanie metody fotogrametrycznej i techniki laserowej do określania odchyłek geometrycznych elementów kołowych. Archiwum Fotogrametrii, Kartografii i Teledetekcji, no. 24, pp. 73–86.
13.   Gołuch P., Ćmielewski K., Kuchmister J., Kowalski K. (2013) The possibility of using close-range mono-photogrammetry in measuring relative displacements of rock blocks. Acta Geodynamica et Geomaterialia, no. 10 (4), pp. 411–420. DOI: 10.13168/AGG.2013.0040.
14.   Graves W., Aminfar K., Lattanzi D. (2022) Full-Scale Highway Bridge Deformation Tracking via Photogrammetry and Remote Sensing. Remote Sensing, no. 14 (12), pp. 2767. DOI: 10.3390/rs14122767.
15.   Kulesh V. P. (2019) Features of Using Videogrammetry in Experimental Aerodynamics. Measurement Techniques, no. 61 (4), pp. 1091–1097. DOI: 10.1007/s11018-019-01554-9.
16.   Luhmann T. (2010) Close range photogrammetry for industrial applications. ISPRS Journal of Photogrammetry and Remote Sensing, no. 65 (6), pp. 558–569. DOI: 10.1016/j.isprsjprs.2010.06.003.
17.   Ortiz-Sanz J., Gil-Docampo M., Bastos G. (2022) Inexpensive photogrammetry applied to displacement measurement of a gridshell. Measurement, no. 198, pp. 111365. DOI: 10.1016/j.measurement.2022.111365.
18.   Shan J., Li Z., Lercel D., Tissue K., Hupy J., Carpenter J. (2023) Democratizing photogrammetry: an accuracy perspective. Geo-spatial Information Science, no. 26 (4), pp. 175–188. DOI: 10.1080/10095020.2023.2178336.
Citation:
Kornilov Yu.N., 
Romanchikov A.Yu., 
Bogolyubova A.A., 
(2023) Estimating deformation process through single shot close range photogrammetry method in Agisoft Metashape. Geodesy and cartography = Geodezia i Kartografia, 84(10), pp. 2-11. (In Russian). DOI: 10.22389/0016-7126-2023-1000-10-2-11
Publication History
Received: 20.07.2023
Accepted: 25.10.2023
Published: 20.11.2023

Content

2023 October DOI:
10.22389/0016-7126-2023-1000-10