UDC: 
DOI: 
10.22389/0016-7126-2023-1002-12-17-26
1 Manevich A.I.
2 Shevchuk R.V.
3 Losev I.V.
4 Kaftan V.I.
5 Urmanov D.I.
6 Shakirov A.I.
Year: 
№: 
1002
Pages: 
17-26

RAS Geophysical Center

1, 
2, 
3, 
4, 
5, 
6, 
Abstract:
The authors present the results of developing a library designed for GNSS deformation measurement upshot analysis in the Python 3 environment and their visualization in the QGIS 3 geographic information system. Development of global navigation satellite systems (permanent networks, data publications, creation of software for processing satellite measurement results) has led to increase in the number of researches in the field of studying modern crustal movements. Deformation analysis is a key component in exploring modern crustal and earth’s surface movements. Despite the large number of commercial and freely distributed software for the declared goal, the problem of integrating calculation results into the environment of freely distributed geoinformation systems is still relevant. The presented PyGeoStrain library includes some sets of corresponding subprograms, created QGIS 3 styles for visualizing deformation parameters, original test data, and a control GIS project for the example territory of the Caucasus. For deformation analysis, PyGeoStrain uses the classical geodetic approach to determining the components of the deformation tensor. The use of PyGeoStrain is an adequate replacement for analogue programs due to open access to the source
This work was funded by the Russian Science Foundation No. 23-17-00176 “System Seismic Hazard Assessment of the Central Part of the Greater Caucasus (Ossetian sector)”
References: 
1.   Gorshkov V.L., Mokhnatkin A.V., Shcherbakova N.V. (2021) GNSS-stations velocity database on the East European Craton for research and practical applications. Geodezia i Kartografia, 82(1), pp. 34-44. (In Russian). DOI: 10.22389/0016-7126-2021-967-1-34-44.
2.   Dokukin P. A., Kaftan V. I., Krasnoperov R. I. Vliyanie formy treugol’nikov v geodezicheskoy seti na rezultaty deformatsiy zemnoy poverkhnosti. zv. vuzov. Geodeziya i aehrofotos’yomka, 2010, no. 5, pp. 6–11.
3.   Esikov N. P. Sovremennye dvizheniya zemnoi poverkhnosti s pozitsii teorii deformatsii. Novosibirsk: Nauka, SO RAN, 1991, 226 p.
4.   Kaftan V. I., Gvishiani A. D., Morozov V. N., Tatarinov V. N. Metodika i rezul'taty opredeleniya dvizhenii i deformatsii zemnoi kory po dannym GNSS na geodinamicheskom poligone v raione zakhoroneniya radioaktivnykh otkhodov. Sovremennye problemy distantsionnogo zondirovaniya iz kosmosa, 2019, no. 1, pp. 83–94. DOI: 10.21046/2070-7401-2019-16-1-83-94.
5.   Kaftan V.I., Krasnoperov R.I., Yurovskii P.P. (2010) Graphical representation of results of the earth’s surface movements and deformations determination by means of global navigation satellite systems. Geodezia i Kartografia, 71(11), pp. 2-7.
6.   Kuz'min Yu. O. Aktual'nye problemy identifikatsii rezul'tatov nablyudenii v sovremennoi geodinamike. Fizika Zemli, 2014, no. 5, pp. 51–64.
7.   Kuchai V. K., Zakharov V. K. Geodezicheskaya osnova dlya izucheniya sovremennoi dinamiki Zemli. Geologiya i geofizika, 1984, no. 5, pp. 17–24.
8.   Mazurov B. T., Mustafin M. G., Panzhin A. A. Metod otsenki divergentsii vektornykh polei deformatsii zemnoi poverkhnosti pri razrabotke mestorozhdenii poleznykh iskopaemykh. Zapiski Gornogo instituta, 2019, Vol. 238, pp. 376–382. DOI: 10.31897/PMI.2019.4.376.
9.   Mazurov B.T., Panzhin A.A., Silaeva A.A. (2016) Structural modeling obtained by the geodesic given nym displacement by visualizing. Geodezia i Kartografia, (3), pp. 35–40. (In Russian). DOI: 10.22389/0016-7126-2016-909-3-25-40.
10.   Markovich K. I. Vliyanie konfiguratsii konechnykh elementov na tochnost' opredeleniya komponentov deformatsii. Vestnik SSUGT, 2019, Vol. 24, no. 3, pp. 37–51. DOI: 10.33764/2411-1759-2019-24-3-37-51.
11.   Allmendinger R., Cardozo N., Fisher D. (2011) Structural Geology Algorithms: Vectors and Tensors. Cambridge University Press, Cambridge, 287 p. DOI: 10.1017/CBO9780511920202.
12.   Blewitt G., Hammond W. C., Kreemer C. (2018) Harnessing the GPS data explosion for interdisciplinary science. Eos, no. 99, DOI: 10.1029/2018EO104623.
13.   Blewitt G., Kreemer C., Hammond W. C., Gazeaux J. (2016) MIDAS robust trend estimator for accurate GPS station velocities without step detection. Journal of Geophysical Research, no. 121, DOI: 10.1002/2015JB012552.
14.   Cardozo N., Allmendinger R.W. (2009) SSPX: A program to compute strain from displacement / velocity data. Computers and Geosciences, no. 35, pp. 1343–1357. DOI: 10.1016/j.cageo.2008.05.008.
15.   Dong D., Herring T. A., King R. W. (1998) Estimating regional deformation from a combination of space and terrestrial geodetic data. Journal of Geodesy, no. 72, pp. 200–214. DOI: 10.1007/s001900050161.
16.   Frank F. C. (1966) Deduction of earth strain from survey data. Bulletin of the Seismological Society of America, no. 56, pp. 35–42.
17.   Goudarzi M. A., Cocard M., Santerre R. (2015) GeoStrain: An open source software for calculating crustal strain rates. Computers and Geosciences, no. 82, pp. 1–12. DOI: 10.1016/j.cageo.2015.05.007.
18.   Sen P. K. (1968) Estimates of the Regression Coefficient Based on Kendall's Tau. Journal of the American Statistical Association, no. 63, pp. 1379–1389. DOI: 10.2307/2285891.
19.   Shen Z.-K., Jackson D. D., Ge B. X. (1996) Crustal deformation across and beyond the Los Angeles basin from geodetic measurements. Journal of Geophysical Research, no. 101, pp. 27957–27980. DOI: 10.1029/96JB02544.
20.   Sokhadze G., Floyd M., Godoladze T., King R., Cowgill E. S., Javakhishvili Z., Hahubia G., Reilinger R. (2018) Active convergence between the Lesser and Greater Caucasus in Georgia: Constraints on the tectonic evolution of the Lesser – Greater Caucasus continental collision. Earth and Planetary Science Letters, no. 481, pp. 154–161. DOI: 10.1016/j.epsl.2017.10.007.
21.   Terada T., Miyabe N. (1929) Deformation of the earth crust in Kwansai district and its relation to the orographic feature. Bulletin of the Earthquake Research Institute, University of Tokyo. no. 7, 223 p.
22.   Teza G., Pesci ј., Galgaro ј. (2008) Grid_strain and grid_strain3: Soft-ware packages for strain field computation in 2D and 3D environments. Computers and Geosciences, Volume 34, no. 9, pp. 1142–1153. DOI: 10.1016/j.cageo.2007.07.006.
23.   Theil H. (1950) A rank-invariant method of linear and polynomial regression analysis. Proceedings of the Koninklijke Nederlandse Akademie Wetenschappen. Series A Mathematical Sciences, no. 53, pp. 386–392.
24.   Tsuboi C. (1963) Investigation on the deformation of Earth's crust found by precise geodetic means. Japanese Journal of Astronomy and Geophysics, no. 10, pp. 93–248.
25.   Wessel P., Luis J.F., Uieda L., Scharroo R., Wobbe F., Smith W. H. F., Tian D. (2019) The Generic Mapping Tools version 6. Geochemistry, Geophysics, Geosystems, no. 20, pp. 5556–5564. DOI: 10.1029/2019GC008515.
26.   Wu J., Tang С., Chen Y. Effect of triangle shape factor on precision of crustal deformation calculated. Journal of Geodesy and Geodynamics, no. 23 (3), pp. 26–30.
Citation:
Manevich A.I., 
Shevchuk R.V., 
Losev I.V., 
Kaftan V.I., 
Urmanov D.I., 
Shakirov A.I., 
(2023) Deformation analysis and visualization from GNSS observations in Python 3 and QGIS 3. Geodesy and cartography = Geodezia i Kartografia, 84(12), pp. 17-26. (In Russian). DOI: 10.22389/0016-7126-2023-1002-12-17-26