DOI: 
10.22389/0016-7126-2023-1002-12-38-48
1 Gvozdev O.G.
2 Materuhin A.V.
3 Maiorov A.A.
Year: 
№: 
1002
Pages: 
38-48

Moscow State University of Geodesy and Cartography (MIIGAiK)

1, 
2, 
3, 
Abstract:
The authors discuss the task of geofield similarity measurement. The local and global approaches to it are reviewed. The rationale of inapplicability of measures, originally developed for images, for general case of geofields is given. The adaptive function family based on generalization of binary similarity measures is proposed. It assumes adaptation to specific scales, tasks and subject domain. The software implementation of this functions family is discussed. Its applicability for detection of similarities and difference of several geofield special cases is considered. The computational performance of the proposed mechanism different use is studied. It is shown that MT-IoU one (Multi-threshold Intersection-over-Union) is flexible and performant framework for building specialized geofield similarity measure functions
The research was carried out within the state assignment of Ministry of Science and Higher Edu-cation of the Russian Federation № FSFE 2022-0002
References: 
1.   Gvozdev O. G., Materukhin A. V., Maiorov A. A. Sravnitel'nyi analiz metodov opredeleniya skhodstva geopolei. Vestnik SSUGT, 2022, no. 6, pp. 120–130. DOI: 10.33764/2411-1759-2022-27-6-120-130.
2.   Birch C. P. D., Oom S. P., Beecham J. A. (2007) Rectangular and hexagonal grids used for observation, experiment, and simulation in ecology. Ecological Modelling, no. 206 (3–4), pp. 347–359. DOI: 10.1016/j.ecolmodel.2007.03.041.
3.   Chung N. C., Miasojedow B., Startek M., Gambin A. (2019) Jaccard/Tanimoto similarity test and estimation methods for biological presence-absence data . BMC Bioinformatics, 20 (S. 15), no. 644, 11 p. DOI: 10.1186/s12859-019-3118-5.
4.   Harris C. R., Millman K. J., van der Walt S. J., et al (2020) Array programming with NumPy. Nature, no. 585, pp. 357–362. DOI: 10.1038/s41586-020-2649-2.
5.   Jaccard P. (1901) Distribution de la flore alpine dans le Bassin des Dranses et dans quelques regions voisines. Bulletin de la Societe Vaudoise des Sciences Naturelles, no. 37 (140), pp. 241–272. DOI: 10.5169/seals-266440.
6.   Myung J. I., Cavagnaro D. R., Pitt M. A. (2013) A tutorial on adaptive design optimization. Journal of Mathematical Psychology, no. 57, pp. 53–67. DOI: 10.1016/j.jmp.2013.05.005.
7.   Parzen E. (1962) On Estimation of a Probability Density Function and Mode. The Annals of Mathematical Statistics, no. 33 (3), pp. 1065–1076. DOI: 10.1214/aoms/1177704472.
8.   Rosenblatt M. (1956) Remarks on Some Nonparametric Estimates of a Density Function. The Annals of Mathematical Statistics, no. 27 (3), pp. 832–837. DOI: 10.1214/aoms/1177728190.
9.   Simpson G. G. (1947) Holarctic mammalian faunas and continental relationship during the Cenozoic. Geological Society of America Bulletin, no. 58, pp. 613–688. DOI: 10.1130/0016-7606(1947)58[613:HMFACR]2.0.CO;2.
10.   Sörensen T. (1948) A method of establishing group of equal amplitude in plant sociobiology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biol Skrifter. Kongelige Danske Videnskabernes Selskab, no. 4, pp. 1–34.
11.   Szymkiewicz D. (1934) Une contribution statistique a la geographie floristique. Acta Societatis Botanicorum Poloniae, no. 3, pp. 249–265. DOI: 10.5586/asbp.1934.012.
12.   Wang Z., Bovik A.C., Sheikh H. R., Simoncelli E. P. (2004) Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, Volume 13, no. 4, pp. 600-612. DOI: 10.1109/TIP.2003.819861.
Citation:
Gvozdev O.G., 
Materuhin A.V., 
Maiorov A.A., 
(2023) Adaptive geofields similarity measure based on binary similarity measures generalization. Geodesy and cartography = Geodezia i Kartografia, 84(12), pp. 38-48. (In Russian). DOI: 10.22389/0016-7126-2023-1002-12-38-48