UDC: 
DOI: 
10.22389/0016-7126-2023-991-1-15-19
1 Ilyushin P.Yu.
2 Kraev M.S.
3 Malinina N. S.
Year: 
№: 
991
Pages: 
15-19

Perm National Research Polytechnic University

1, 
2, 
3, 
Abstract:
The authors discuss the course of processing the terrestrial laser scanning survey data (TLS). The aim of the study is to assess the accuracy of creating digital elevation models (DEMs) depending on the scanning step. As initial data, a stitched and oriented cloud of points of the surveyed surface in the territory of the industrial site was taken; it was subsequently used to create digital elevation models using the TIN method. At the next stage of the study, 6 surveys with different scanning steps (from 0,3 m to 5 m) were artificially simulated in the Cyclone software; after that a comparative analysis of the obtained DEMs building accuracy was carried out. The main indicator of model precision is the root-mean-square deviation (RMSD). In the course of the study, the quality of making a digital elevation models was assessed and the dependence of the surface construction error on the increase in the scanning step was determined.
The study was conducted with the financial support of the Strategic Academic Leadership Program 'Priority 2030'
References: 
1.   Altyntsev M. A., Karpik P. A. Metodika sozdaniya tsifrovykh trekhmernykh modelei ob"ektov infrastruktury neftegazodobyvayushchikh kompleksov s primeneniem nazemnogo lazernogo skanirovaniya. Vestnik SSUGT, 2020, Vol. 25, no. 2, pp. 121–139. DOI: 10.33764/2411-1759-2020-25-2-121-139.
2.   Altyntsev M. A., Iptysheva M. A. Sovmestnaya obrabotka dannykh mobil'nogo lazernogo skanirovaniya i tsifrovoi nazemnoi fotos"emki dlya postroeniya edinogo massiva tochek. Interekspo GEO-Sibir', 2018, no. 1, pp. 87–95.
3.   Antipov A. V. Vlijanie plotnosti tochek vozdushnogo lazernogo skanirovanija na tochnost’ sozdanija cifrovoj modeli rel’efa mestnosti [Influence of the density of air laser scanning points on the accuracy of creating a digital terrain model]. Sb. materialov VI Mezhdunarodnogo nauchnogo kongressa. Geo-Sibir’–2010.Distantsionnye metody zondirovaniya zemli i fotogrammetriya, monitoring okruzhayushchey sredy, geoekologiya,chast’, 2010, Vol. 4, pp. 18-23.
4.   Budarova V. A., Martynova N. G., Sheremetinskii A. V., Privalov A. V. Nazemnoe lazernoe skanirovanie ob"ektov promyshlennykh ploshchadok na territorii neftegazovykh mestorozhdenii. Moskovskii ekonomicheskii zhurnal, 2019, no. 6, pp. 8–14. DOI: 10.24411/2413-046X-2019-16004.
5.   Gerasyuk E. A., Komissarov A. V. Primenenie nazemnogo lazernogo skanirovaniya dlya inzhenerno-geodezicheskikh izyskanii pri rekonstruktsii avtomobil'nykh dorog. Interekspo GEO-Sibir', 2017, Vol. 9, no. 1, pp. 37–42.
6.   Kolomiets V. S. Metodika ispol'zovaniya lazernogo skanirovaniya v inzhenerno-geodezicheskikh izyskaniyakh v tselyakh primeneniya na ob"ektakh zheleznodorozhnogo transporta. Proektirovanie razvitiya regional'noi seti zheleznykh dorog, 2019, no. 7, pp. 57–64.
7.   Komissarov A. V. Issledovanie tochnosti postroeniya tsifrovoi modeli rel'efa po dannym nazemnogo lazernogo skanirovaniya. GEO-Sibir', 2006, no. 2, pp. 150–153.
8.   Kochneva A. A. Metodika postroeniya tsifrovykh modelei rel'efa po dannym vozdushnogo lazernogo skanirovaniya. Vestnik SSUGT, 2017, Vol. 22, no. 2, pp. 44–54.
9.   Medvedev V. I., Raikova L. S. Programmy dlya obrabotki dannykh lazernogo skanirovaniya mestnosti. SAPR i GIS avtomobil'nykh dorog, 2017, no. 2 (9), pp. 10–31. DOI: 10.17273/CADGIS.2017.2.2.
10.   Mirmakhmudov E. R., Gulyamova L. Kh., Shchukina O. G. O tochnosti iskhodnykh dannykh dlya postroeniya tsifrovoi modeli rel'efa. Teoreticheskie i prakticheskie aspekty razvitiya sovremennoi nauki: teoriya, metodologiya, praktika, Ufa: OOO «Nauchno-izdatel'skii tsentr «Vestnik nauki», 2020, pp. 76–86.
11.   Seredovich V. A., Komissarov D. V. Sostoyanie, problemy i perspektivy primeneniya tekhnologii nazemnogo lazernogo skanirovaniya. GEO-Sibir', 2005, Vol. 1, no. 1, pp. 193–196.
12.   Fan L., Atkinson P. (2015) Accuracy of digital elevation models derived from terrestrial laser scanning data. IEEE Geoscience and Remote Sensing Letters, Volume 12, no. 9, pp. 1923–1927. DOI: 10.1109/LGRS.2015.2438394.
13.   Starek M. J., Chu T., Mitasova H., Harmon R. S. (2020) Viewshed simulation and optimization for digital terrain modelling with terrestrial laser scanning. International Journal of Remote Sensing, no. 41 (16), pp. 6409–6426. DOI: 10.1080/01431161.2020.1752952.
14.   Szabó Z., Tóth C. A., Holb I., Szabó S. (2020) Aerial laser scanning data as a source of terrain modeling in a fluvial environment: biasing factors of terrain height accuracy. Sensors, no. 20 (7):2063, DOI: 10.3390/s20072063.
Citation:
Ilyushin P.Yu., 
Kraev M.S., 
Malinina N. S., 
(2023) Investigation of the digital elevation model creating accuracy depending on the terrestrial laser scanning density. Geodesy and cartography = Geodezia i Kartografia, 84(1), pp. 15-19. (In Russian). DOI: 10.22389/0016-7126-2023-991-1-15-19