UDC: 
DOI: 
10.22389/0016-7126-2023-991-1-2-14
1 Bovshin N.A.
Year: 
№: 
991
Pages: 
2-14

Roskadastr, PLC

1, 
Abstract:
It was shown in the preceding articles, that the positions of permanent EPN / IGS stations, whose GNSS antennas are placed on buildings or other structures, can have non-geodynamical individual seasonal (with a period of one year), spontaneous (lasting from several days to several weeks) and diurnal variations. It was shown too, that they may be caused by an expanding-contracting effect of the buildings or other stuctures under influence of ambient temperature changes. Typical features of the mentioned effect were displayed through behaviour of some permanent EPN / IGS stations. This paper continues the investigating. A set of EPN stations affected by this effect was shown. Additional features of this effect were found that change the stations` behavior. New situations are revealed in which this effect manifests itself. A way to reduce temperature dependence of stations positions was noted.
References: 
1.   Bovshin N.A. (2022) Investigating the ambient temperature dependence of EPN/IGS stations positions. Geodezia i Kartografia, 83(3), pp. 2–13. (In Russian). DOI: 10.22389/0016-7126-2022-981-3-2-13.
2.   Bovshin N.A. (2022) Investigating the ambient temperature influence on the positions of EPN/IGS stations located on buildings. Geodezia i Kartografia, 83(9), pp. 2-13. (In Russian). DOI: 10.22389/0016-7126-2022-987-9-2-13.
3.   Bogusz J., Figurski M. (2014) Annual signals observed in regional GPS networks. Acta Geodynamica et Geomaterialia, Vol. 11, no. 2 (174), pp. 125–131. DOI: 10.13168/AGG.2014.0003.
4.   Bogusz J., Figurski M., Kroszczynski K., Szafranek K. (2011) Investigation of environmental influences to the precise GNNS solutions. Acta Geodynamica et Geomaterialia, Volume 8, no. 1, pp. 5–15.
5.   Chanard K., Avouac J. P., Ramillien G., Genrich J. (2014) Modeling deformation induced by seasonal variations of continental water in the Himalaya region: Sensitivity to Earth elastic structure. Journal of Geophysical Research: Solid Earth, no. 119, pp. 5097–5113. DOI: 10.1002/2013JB010451.
6.   Chen Q., van Dam T., Sneeuw N., Collilieux X., Weigelt M., Rebischung P. (2013) Singular spectrum analysis for modeling seasonal signals from GPS time series . Journal of Geodynamics, no. 72, pp. 25–35. DOI: 10.1016/j.jog.2013.05.005.
7.   Davis J. L., Wernicke B. P., Tamisiea M. E. (2012) On seasonal signals in geodetic time series. Journal of geophysical research, no. 117, B01403, pp. 1–10. DOI: 10.1029/2011JB008690.
8.   Dong D., Fang P., Bock Y., Cheng M. K., Miyazaki S. (2002) Anatomy of apparent seasonal variations from GPS-derived site position time series. J. Geophys. Res., no. 107(B4):2075, DOI: 10.1029/2001JB000573.
9.   Drouin V., Heki K., Sigmundsson F., Hreinsdóttir S., Ófeigsson B. G. (2016) Constraints on seasonal load variations and regional rigidity from continuous GPS measurements in Iceland, 1997–2014. Geophysical Journal International, Volume 205, no. 3, pp. 1843–1858. DOI: 10.1093/gji/ggw122.
10.   Flouzat ћ., Bettinelli P., Willis P., Avouac J.-P., Héritier T., Gautam U. (2009) Investigating tropospheric effects and seasonal position variations in GPS and DORIS time-series from the Nepal Himalaya. Geophysical Journal International, Volume 178, no. 3, pp. 1246–1259. DOI: 10.1111/j.1365-246X.2009.04252.x.
11.   Freymueller J. T. (2009) Seasonal position variations and regional reference frame realization. Geodetic reference frames. International association of geodesy symposia, Volume 134, Springer, Berlin, Heidelberg, pp. 191–196. DOI: 10.1007/978-3-642-00860-3_30.
12.   Fu Y., Argus D. F., Freymueller J. T., Heflin M. B. (2013) Horizontal motion in elastic response to seasonal loading of rain water in the Amazon Basin and monsoon water in Southeast Asia observed by GPS and inferred from GRACE. Geophysical Research Letters, no. 40, pp. 6048–6053. DOI: 10.1002/2013GL058093.
13.   Gerhatova L., Hefty J., Spanik P. (2016) Short-Term and Long-Term Variability of Antenna Position Due to Thermal Bending of Pillar Monument at Permanent GNSS Station. Reports on Geodesy and Geoinformatics, no. 100, pp. 66–77. DOI: 10.1515/rgg-2016-0007.
14.   Hefty J., Igondová M. (2010) Diurnal and semi-diurnal coordinate variations observed in EUREF permanent GPS network – a case study for period from 2004.0 to 2006.9. Contributions to Geophysics and Geodesy, no. 40 (3), pp. 225–247. DOI: 10.2478/v10126-010-0010-8.
15.   Hefty J., Igondová M., Droščák B. (2009) Homogenization of long-term GPS monitoring series at permanent stations in Central Europe and Balkan Peninsula. Contributions to Geophysics and Geodesy, no. 39, pp. 19–42. DOI: 10.2478/v10126-009-0002-8.
16.   Hill E. M., Davis J. L., Elosegui P., Wernicke B. P., Malikowski E., Niemi N. A. (2009) Characterization of site-specific GPS errors using a short-baseline network of braced monuments at Yucca Mountain, southern Nevada. Journal of Geophysical Research Atmospheres, no. 114, pp. B11402. DOI: 10.1029/2008JB006027.
17.   Kaczmarek A., Kontny B. (2018) Estimates of seasonal signals in GNSS time series and environ-mental loading models with iterative least-squares estimation (ILSE) approach. Acta Geodynamica et Geomaterialia, no. 15 (2), pp. 131–141. DOI: 10.13168/AGG.2018.0009.
18.   Liu B., Dai W., Liu N. (2017) Extracting seasonal deformations of the Nepal Himalaya region from vertical GPS position time series using independent component analysis. Advances in Space Research, no. 60 (12), pp. 2910–2917. DOI: 10.1016/j.asr.2017.02.028.
19.   Liu B., Xing X., Tan J., Xia Q. (2020) Modeling seasonal variations in vertical GPS coordinate time series using independent component analysis and varying coefficient regression . Sensors, no. 20 (19):5627, DOI: 10.3390/s20195627.
20.   Maciuk K., Szombara S. (2018) Annual crustal deformation based on GNSS observations between 1996 and 2016. Arab J Geosci, Volume 11, no. 667, DOI: 10.1007/s12517-018-4022-4.
21.   New M., Lister D., Hulme M., Makin I. (2002) A high-resolution data set of surface climate over global land areas. Climate research, no. 21, pp. 1–25.
22.   Yan H., Chen W., Zhu Y., Zhan W., Zhong M. (2009) Contributions of thermal expansion of monuments and nearby bedrock to observed GPS height changes. Geophysical Research Letters, no. 36, pp. L13301. DOI: 10.1029/2009GL038152.
Citation:
Bovshin N.A., 
(2023) Investigating the ambient temperature influence on the positions of EPN/IGS stations located on buildings and other structures. Geodesy and cartography = Geodezia i Kartografia, 84(1), pp. 2-14. (In Russian). DOI: 10.22389/0016-7126-2023-991-1-2-14
Publication History
Received: 08.09.2022
Accepted: 28.12.2022
Published: 20.02.2023

Content

2023 January DOI:
10.22389/0016-7126-2023-991-1