ISSN 0016-7126 (Print)
ISSN 2587-8492 (Online)
1. Anashkin P. A. Tsifrovye informatsionnye modeli kak instrument issledovaniya geoprostranstva. Vestnik SSUGT, 2022, Vol. 27, no. 3, pp. 19–29. DOI: 10.33764/2411-1759-2022-27-3-19-29. |
2. Anikeeva I.A., Babashkin N.M., Kadnichanskiy S.A., Nekhin S.S. (2018) The Possibility and Effectiveness of Using Drones When Performing Cadastral Works. Geodezia i Kartografia, 79(8), pp. 44-52. (In Russian). DOI: 10.22389/0016-7126-2018-938-8-44-52. |
3. Babashkin N.M., Nekhin S.S. (2015) Topographical aerial photography. Situation and development prospects. Geodezia i Kartografia, (7), pp. 36-41. (In Russian). DOI: 10.22389/0016-7126-2015-901-7-36-41. |
4. Bezmenov V.M., Safin K.I. (2021) Researching the accuracy of determining spatial coordinates through processing images from drones. Geodezia i Kartografia, 82(1), pp. 45-55. (In Russian). DOI: 10.22389/0016-7126-2021-967-1-45-55. |
5. Komissarov A. V., Remizov A. V. Metodika ispol'zovaniya BIM-tekhnologii i lazernogo skanirovaniya dlya rekonstruktsii i modernizatsii ob"ektov. Vestnik SSUGT, 2022, Vol. 27, no. 2, pp. 115–124. DOI: 10.33764/2411-1759-2022-27-2-115-124. |
6. Korenev V. I. Ispol'zovanie tsifrovykh tekhnologii i 3D-modelirovaniya v gradostroitel'noi deyatel'nosti (na primere goroda Tomska). Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta, 2020, Vol. 22, no. 6, pp. 70–82. DOI: 10.31675/1607-1859-2020-22-6-70-82. |
7. Prusakov A. N., Nekhin S. S. Tekhnicheskoe regulirovanie protsessov aerofototopograficheskoi s"emki. Tekhnicheskii komitet po standartizatsii TK-404 «Geodeziya i kartografiya», URL: https://clck.ru/33f7Gb (accessed: 28.01.2023). |
8. Rusyaeva E. A. Teoriya matematicheskoi obrabotki geodezicheskikh izmerenii: Ucheb. posobie. – Ch. I. Teoriya oshibok izmerenii. Moskva: MIIGAiK, 2016, 56 p. |
9. Fleenko A. S., Dem'yanenko A. F. Razrabotka metodiki perekhoda k tekhnologiyam informatsionnogo modelirovaniya v inzhenernykh izyskaniyakh (na primere inzhenerno-ekologicheskikh izyskanii). Vestnik NGU. Ser. «Informatsionnye tekhnologii», 2021, Vol. 19, no. 3, pp. 70–82. DOI: 10.25205/1818-7900-2021-19-3-70-82. |
10. Shurshilin E. A., Olekhnovich Ya. A. Geoinformatsionnye sistemy v stroitel'stve i analiz tochnosti izmerenii. Stroitel'stvo i tekhnogennaya bezopasnost', 2021, no. 23 (75), pp. 49–58. |
11. Yurchenko V.I. (2021) Matters of choosing the pixel size in topographic aerial photography. Geodezia i Kartografia, 82(11), pp. 27-39. (In Russian). DOI: 10.22389/0016-7126-2021-977-11-27-39. |
12. Abdullah Q.A., Maune D.F., Heidemann H.K. (2015) New Standard for New Era: Overview of the 2015 ASPRS Positional Accuracy Standards for Digital Geospatial Data. Photogrammetric Engineering and Remote Sensing, no. 81 (3), pp. 173–176. DOI: 10.14358/PERS.81.3.173. |
13. Li Z., Wu B., Li Y. (2020) Integration of aerial, MMS, and backpack images for seamless 3D mapping in urban areas. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, no. XLIII-B2-2020, DOI: 10.5194/isprs-archives-XLIII-B2-2020-443-2020. |
14. Smith D. L., Abdullah Q. A., Maune D. F., Heidemann H. K. (2015) New ASPRS Positional Accuracy Standards for Digital Geospatial Data Released. Photogrammetric Engineering and Remote Sensing, no. 81, I.4, pp. 1073–1085. DOI: 10.14358/PERS.81.3.A1-A26. |
(2023) Method of determining the regulatory requirements for the technological stages` accuracy in topographic aerial photography. Geodesy and cartography = Geodezia i Kartografia, 84(2), pp. 29-43. (In Russian). DOI: 10.22389/0016-7126-2023-992-2-29-43 |