UDC: 
DOI: 
10.22389/0016-7126-2023-992-2-29-43
1 Yurchenko V.I.
Year: 
№: 
992
Pages: 
29-43

SPKB “Energy”, LLC

1, 
Abstract:
Introduction of BIM-modeling methodology and geoinformation technologies in the construction industry causes the need of taking into account the specific customer requirements for the accuracy of building 3D-models in engineering-geodetic surveys. The author analyzes the requirements to the exactness of the technological stages of the current regulatory document on aerial photographic survey. The represented concept of approaches to precision standards corresponds to the outdated analogue model. The need for a different method of determining normative tolerances in obtaining modern types of products is noted. The relevance of requirements to the accuracy of building 3D-models without reference to the scale of the topoplan and the height of the relief section is shown. The method of designing the regulatory admissions for the accuracy of technological stages is proposed. They are designed for a particular object before the beginning of fieldwork with controlled variations of error accumulation coefficients and expressed as average errors in centimeters and fractions of a pixel on the ground. The obtained allowances are the substantiating requirements for the chosen technology and accuracy control of the work results in the technical design of aerial photographic survey. Practical calculation of tolerances for constructing a 3D model of the urban development object to meet the customers’ requirements was carried out. Conclusions are given on the prospects of the method in areas that use remote sensing materials with any technology of their processing and a variety of user’s needs.
References: 
1.   Anashkin P. A. Tsifrovye informatsionnye modeli kak instrument issledovaniya geoprostranstva. Vestnik SSUGT, 2022, Vol. 27, no. 3, pp. 19–29. DOI: 10.33764/2411-1759-2022-27-3-19-29.
2.   Anikeeva I.A., Babashkin N.M., Kadnichanskiy S.A., Nekhin S.S. (2018) The Possibility and Effectiveness of Using Drones When Performing Cadastral Works. Geodezia i Kartografia, 79(8), pp. 44-52. (In Russian). DOI: 10.22389/0016-7126-2018-938-8-44-52.
3.   Babashkin N.M., Nekhin S.S. (2015) Topographical aerial photography. Situation and development prospects. Geodezia i Kartografia, (7), pp. 36-41. (In Russian). DOI: 10.22389/0016-7126-2015-901-7-36-41.
4.   Bezmenov V.M., Safin K.I. (2021) Researching the accuracy of determining spatial coordinates through processing images from drones. Geodezia i Kartografia, 82(1), pp. 45-55. (In Russian). DOI: 10.22389/0016-7126-2021-967-1-45-55.
5.   Komissarov A. V., Remizov A. V. Metodika ispol'zovaniya BIM-tekhnologii i lazernogo skanirovaniya dlya rekonstruktsii i modernizatsii ob"ektov. Vestnik SSUGT, 2022, Vol. 27, no. 2, pp. 115–124. DOI: 10.33764/2411-1759-2022-27-2-115-124.
6.   Korenev V. I. Ispol'zovanie tsifrovykh tekhnologii i 3D-modelirovaniya v gradostroitel'noi deyatel'nosti (na primere goroda Tomska). Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta, 2020, Vol. 22, no. 6, pp. 70–82. DOI: 10.31675/1607-1859-2020-22-6-70-82.
7.   Prusakov A. N., Nekhin S. S. Tekhnicheskoe regulirovanie protsessov aerofototopograficheskoi s"emki. Tekhnicheskii komitet po standartizatsii TK-404 «Geodeziya i kartografiya», URL: https://clck.ru/33f7Gb (accessed: 28.01.2023).
8.   Rusyaeva E. A. Teoriya matematicheskoi obrabotki geodezicheskikh izmerenii: Ucheb. posobie. – Ch. I. Teoriya oshibok izmerenii. Moskva: MIIGAiK, 2016, 56 p.
9.   Fleenko A. S., Dem'yanenko A. F. Razrabotka metodiki perekhoda k tekhnologiyam informatsionnogo modelirovaniya v inzhenernykh izyskaniyakh (na primere inzhenerno-ekologicheskikh izyskanii). Vestnik NGU. Ser. «Informatsionnye tekhnologii», 2021, Vol. 19, no. 3, pp. 70–82. DOI: 10.25205/1818-7900-2021-19-3-70-82.
10.   Shurshilin E. A., Olekhnovich Ya. A. Geoinformatsionnye sistemy v stroitel'stve i analiz tochnosti izmerenii. Stroitel'stvo i tekhnogennaya bezopasnost', 2021, no. 23 (75), pp. 49–58.
11.   Yurchenko V.I. (2021) Matters of choosing the pixel size in topographic aerial photography. Geodezia i Kartografia, 82(11), pp. 27-39. (In Russian). DOI: 10.22389/0016-7126-2021-977-11-27-39.
12.   Abdullah Q.A., Maune D.F., Heidemann H.K. (2015) New Standard for New Era: Overview of the 2015 ASPRS Positional Accuracy Standards for Digital Geospatial Data. Photogrammetric Engineering and Remote Sensing, no. 81 (3), pp. 173–176. DOI: 10.14358/PERS.81.3.173.
13.   Li Z., Wu B., Li Y. (2020) Integration of aerial, MMS, and backpack images for seamless 3D mapping in urban areas. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, no. XLIII-B2-2020, DOI: 10.5194/isprs-archives-XLIII-B2-2020-443-2020.
14.   Smith D. L., Abdullah Q. A., Maune D. F., Heidemann H. K. (2015) New ASPRS Positional Accuracy Standards for Digital Geospatial Data Released. Photogrammetric Engineering and Remote Sensing, no. 81, I.4, pp. 1073–1085. DOI: 10.14358/PERS.81.3.A1-A26.
Citation:
Yurchenko V.I., 
(2023) Method of determining the regulatory requirements for the technological stages` accuracy in topographic aerial photography. Geodesy and cartography = Geodezia i Kartografia, 84(2), pp. 29-43. (In Russian). DOI: 10.22389/0016-7126-2023-992-2-29-43
Publication History
Received: 15.01.2023
Accepted: 01.03.2023
Published: 20.03.2023

Content

2023 February DOI:
10.22389/0016-7126-2023-992-2