DOI: 
10.22389/0016-7126-2023-992-2-44-53
1 Zakharov K.V.
2 Emelyanova L.G.
3 Oboturov A.S.
Year: 
№: 
992
Pages: 
44-53

Moscow state Academy of Veterinary Medicine and Biotechnology – MVA by K.I. Skryabin

1, 

Lomonosov Moscow State University (MSU)

2, 

RAS Water Problems Institute

3, 
Abstract:
Developing the reservoirs’ coastal strip in the Moscow oblast is an acute problem, and it has become especially critical during the recent three decades. To assess the impact of the coastal landscape structure transformation on the reservoirs eutrophication, we employed the vegetation index NDVI, which correlates with the chlorophyll A content in the water. Five water bodies were chosen as research objects and the materials of the Landsat 5 and 7 missions for the period from 1985 to 2020 with five-year intervals were used. The spatial and temporal dynamics of biotopes were monitored in 1 km wide coastal strip, and the values of the vegetation index were counted in the area. We have created time series of average index values with the increasing trend approximated through linear and polynomial functions. The dynamics of open and forest biotopes are not the same, and only the built-up area constantly expands. Regression analysis has shown the relationship between the coastal landscape structure and NDVI values. Growing development of areas significantly causes an enhancement of the mentioned amounts.
This study was carried out under State Order of Water Problems Institute of the Russian Academy of Sciences (No. FMWZ-2022-0002)
References: 
1.   Gidroekologicheskii rezhim vodokhranilishch Podmoskov'ya (nablyudeniya, diagnoz, prognoz). Pod red. K. K. Edel'shteina. Moskva: Pero, 2015, 268 p.
2.   Gnedenko E.D., Kaz'min M.A. Zemel'naya reforma i problemy razvitiya Moskovskogo stolichnogo regiona. Gosudarstvennoe upravlenie. Elektronnyi vestnik, 2013, 36. pp. 143–156.
3.   Datsenko Yu. S., Puklakov V. V., Edel'shtein K. K. Analiz vliyaniya abioticheskikh faktorov na razvitie fitoplanktona v maloprotochnom vodoeme. Trudy Karel'skogo nauchnogo tsentra RAN, 2017, no. 10, pp. 73–85. DOI: 10.17076/lim611.
4.   Rozmainskii I. V., Lozhnikova A. V., Kichko N. I., Khloptsov D. M. Dacha v postsovetskoi Rossii: institutsional'nyi analiz. Zhurnal institutsional'nykh issledovanii, 2017, Vol. 9, no. 2, pp. 63–79. DOI: 10.17835/2076-6297.2017.9.2.063-079.
5.   Slabunova A. V., Surovkina A. P. O probleme diffuznogo zagryazneniya vodnykh ob"ektov. Nauchnyi zhurnal Rossiiskogo NII problem melioratsii, 2020, no. 2 (38), pp. 124–139. DOI: 10.31774/2222-1816-2020-2-124-139.
6.   Suslov S.V. Izmeneniya khimicheskogo sostava vody vodokhranilishch kanala imeni Moskvy. Vestnik Orenburgskogo gosudarstvennogo universiteta, 2017, no. 12 (212), pp. 34–37.
7.   Khrustaleva M. A., Suslov S. V., Zborovskaya M. I., Zimnyukov V. A. Otsenka vozdeistviya kompleksov gidrotekhnicheskikh sooruzhenii na formirovanie landshaftov vodookhrannykh zon Moskvoretskoi i Volzhskoi vodokhozyaistvennykh sistem. Prirodoobustroistvo, 2019, 1. pp. 27–34.
8.   Shushkevich E. V., Babaev A. V., Bastrykin R. I., et al. Perspektivy razvitiya sistemy vodosnabzheniya g. Moskvy s uchetom prisoedinennykh territorii na dolgosrochnyi period. Vodosnabzhenie i sanitarnaya tekhnika, 2016, no. 6, pp. 6–12.
9.   Edel'shtein K. K., Puklakov V. V., Datsenko Yu. S. Eksperimental'no-teoreticheskie osnovy diagnoza i prognoza tsveteniya v vodokhranilishchakh – istochnikakh munitsipal'nogo vodosnabzheniya. Voda Magazine, 2017, no. 4 (116), pp. 34–40.
10.   Adhikari S. (2020) Temporal dynamics of land use and water quality in three sub-catchments of the Rur River, Germany. Journal of Geoscience and Environment Protection, no. 8, pp. 36–47. DOI: 10.4236/gep.2020.88004.
11.   Carvalho L., Poikane S., Lyche Solheim A., et al. (2013) Strength and uncertainty of phytoplankton metrics for assessing eutrophication impacts in lakes. Hydrobiologia, no. 704, pp. 127–140. DOI: 10.1007/s10750-012-1344-1.
12.   Cuo L., Zhang Y., Gao Y., Hao Z., Cairang L. The impacts of climate change and land cover/use transition on the hydrology in the upper Yellow River Basin, China. Journal of Hydrology, Volume 2013, no. 502, pp. 37–52. DOI: 10.1016/j.jhydrol.2013.08.003.
13.   Fletcher T.D., Andrieu H., Hamel P. (2013) Understanding, management and modelling of urban hydrology and its consequences for receiving waters: a state of the art. Advances in Water Resources, no. 51, pp. 261–279. DOI: 10.1016/j.advwatres.2012.09.001.
14.   Fraser E.D.G., Kenney W.A. (2000) Cultural background and landscape history as factors affecting perceptions of the urban forest. Journal of Arboriculture, no. 26, 2, pp. 106–113. DOI: 10.48044/jauf.2000.013.
15.   Foley J.A., De Fries R., Asner G.P., et al. (2005) Global Consequences of Land Use. Science, no. 309, pp. 570–574. DOI: 10.1126/science.1111772.
16.   Gilerson A.A., Gitelson A.A., Zhou J., et al. (2010) Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands. Optics Express, no. 18, 23, pp. 24109-24125. DOI: 10.1364/OE.18.024109.
17.   Gholizadeh M.H., Melesse A.M., Reddi L. (2016) A comprehensive review on water quality parameters estimation using remote sensing techniques. Sensors, Volume 16, no. 8, DOI: 10.3390/s16081298.
18.   Gu Q., Deng J., Wang K., et al. (2014) Identification and assessment of potential water quality impact factors for drinking-water reservoirs. Int. J. Environ. Res. Public Health, no. 11, pp. 6069–6084. DOI: 10.3390/ijerph110606069.
19.   Kallus R., Vinnitsky Y. (2016) The dacha: Home away from home. Journal of Architectural and Planning Research, Volume 33, no. 4, pp. 271–292.
20.   Kaushal S.S., Belt K.T. (2012) The urban watershed continuum: evolving spatial and temporal dimensions. Urban Ecosystems, no. 15, pp. 409–435. DOI: 10.1007/s11252-012-0226-7.
21.   Li S., Gu S., Liu W., et al. (2008) Water quality in relation to land use and land cover in the upper Han River Basin, China. Catena, Volume 75, no. 2, pp. 216–222. DOI: 10.1016/j.catena.2008.06.005.
22.   Markogianni V., Kalivas D., Petropoulos G.P., Dimitriou E. (2020) Estimating chlorophyll-a of inland water bodies in Greece based on Landsat data. Remote Sensing , Volume 12, no. 13, pp. 2087. DOI: 10.3390/rs12132087.
23.   Matthews M.A. (2011) Current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. International Journal of Remote Sensing, no. 32, pp. 6855–6899. DOI: 10.1080/01431161.2010.512947.
24.   Redfern T.W., Macdonald N., Kjeldsen T.R., et al. (2016) Current understanding of hydrological processes on common urban surfaces. Progress in Physical Geography: Earth and Environment, Volume 40, no. 5, pp. 699–713. DOI: 10.1177/0309133316652819.
25.   Sliva L., Williams D.D. (2001) Buffer zone versus whole catchment approaches to studying land use impact on river water quality. Water Research, Volume 35, no. 14, pp. 3462–3472. DOI: 10.1016/S0043-1354(01)00062-8.
26.   Topp S.N., Pavelsky T.M., Jensen D., et al. (2020) Research trends in the use of remote sensing for inland water quality science: Moving towards multidisciplinary applications. Water, Volume 12, no. 1, pp. 169. DOI: 10.3390/w12010169.
27.   Usali N., Ismail M.H. (2010) Use of remote sensing and GIS in monitoring water quality. Journal of Sustainable Development, Volume 3, no. 3, pp. 228–238. DOI: 10.5539/jsd.v3n3p228.
28.   Xue J., Su B. (2017) Significant remote sensing vegetation indexes: a review of developments and application. Journal of sensors, no. 1, pp. 1‒17. DOI: 10.1155/2017/1353691.
29.   Zakharov K. (2020) The assessment of the efficiency of environmental activities in Moscow. Eco. Env. and Cons, Volume 26, no. 3, pp. 1043–1048.
Citation:
Zakharov K.V., 
Emelyanova L.G., 
Oboturov A.S., 
(2023) Assessment of the shoreline landscape structure transformation through using the Earth remote sensing. Geodesy and cartography = Geodezia i Kartografia, 84(2), pp. 44-53. (In Russian). DOI: 10.22389/0016-7126-2023-992-2-44-53