DOI: 
10.22389/0016-7126-2023-995-5-52-63
1 Zhurbin I.V.
2 Zlobina A.G.
3 Shaura A.S.
4 Bazhenova A.I.
Year: 
№: 
995
Pages: 
52-63

Udmurt Federal Research Center of the UB RAS

1, 
2, 
3, 
4, 
Abstract:
Comprehensive study of a large territory is necessary for a reliable assessment of the boundaries of archaeological sites, the territory of which has been used as agricultural land for a long time. Multispectral remote sensing data are an effective tool for identifying areas of the cultural layer of different thickness and structure. The considered algorithm of multispectral data processing includes three main stages: calculation of Haralick`s textural features; reducing the number of features by the principal components analysis; image segmentation by k-means method. Interpretation of obtained coordinate-referenced segments of diverse vegetation is based on a comprehensive analysis of location segments and its configuration, correlation with reference data (geophysics, soil research and archeology). The region of interest is located in the northern part of the Udmurt Republic and includes the medieval settlement of Guryakar of the 9th–13th centuries AD and the surrounding area. Image processing by the considered statistical analysis algorithm made it possible to propose a reconstruction of the original cultural layer on various structural parts of the settlement and to determine the boundaries of the archaeological site. Thus proposed algorithm of statistical analysis allows us to identify areas of diverse vegetation in anthropogenically transformed territories. In particular, the application of this algorithm makes it possible to estimate the boundaries of the distribution of the cultural layer for archaeological sites destroyed by late plowing. It is necessary to ensure targeted scientific research and preserve objects of the historical and cultural heritage of Russia.
References: 
1.   Ivanov A. G., Ivanova M. G., Ostanina T. I., Shutova N. I. Arkheologicheskaya karta severnykh raionov Udmurtii. Izhevsk: UIIYaL UrO RAN, 2004, 276 p.
2.   Ivanova M. G. Gorodishche Gur'yakar: Rezul'taty issledovanii 1979. Srednevekovye pamyatniki basseina r. Cheptsy, Izhevsk: Nauch.-issled. in-t pri Sovete Ministrov Udmurtskoi ASSR, 1982, pp. 3–26.
3.   Luppov P. N. Dokumenty po istorii Udmurtii XV–XVII vekov. Izhevsk: Udmurtskoe knizhnoe izd-vo, 1958, 422 p.
4.   Abate N., Elfadaly A., Masini N., Lasaponara R. (2020) Multitemporal 2016–2018 Sentinel-2 data enhancement for landscape archaeology: The case study of the Foggia Province, southern Italy. Remote Sensing, no. 12 (8), pp. 1309. DOI: 10.3390/rs12081309.
5.   Alpaydin E. (2010) Introduction to machine learning, 2nd ed. MIT Press, London, 539 p.
6.   Calinski T., Harabasz J. (1974) A dendrite method for cluster analysis. Communications in Statistics, no. 3, pp. 1–27. DOI: 10.1080/03610927408827101.
7.   Le Hegarat-Mascle S., Vidal-Madjar D., Dinstein I. (1973) Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics, no. 3, pp. 610–621. DOI: 10.1109/TSMC.1973.4309314.
8.   Jollife I. T. (2002) Principal components analysis, 2nd ed. Springer, New York, 487 p.
9.   Kallepalli A., Kumar A., Khoshelham K., James D. B. (2016) Application of spectral and spatial indices for specific class identification in Airborne Prism Experiment (APEX) imaging spectrometer data for improved land cover classification. SPIE Remote Sensing, no. 100050Z, DOI: 10.1117/12.2241430.
10.   Kwak G.-H., Park N.-W. (2019) Impact of texture information on crop classification with machine learning and UAV images. Applied Science, no. 9(4):643, DOI: 10.3390/app9040643.
11.   Luo L., Wang X., Guo H., Lasaponara R., Zong X., Masini N., Wang G., Shi P., Khatteli H., Chen F., Tariq Sh., Shao J., Bachagha N., Yang R., Yao Y. (2019) Airborne and spaceborne remote sensing for archaeological and cultural heritage applications: A review of the century (1907–2017). Remote Sensing of Environment, no. 232, pp. 111280. DOI: 10.1016/j.rse.2019.111280.
12.   Noviello M., Ciminale M., De Pasquale V. (2013) Combined application of pansharpening and enhancement methods to improve archaeological cropmark visibility and identification in QuickBird imagery: two case studies from Apulia, Southern Italy. Journal of Archaeological Science, no. 40 (10), pp. 3604–3613. DOI: 10.1016/j.jas.2013.04.013.
13.   Rejichi S., Chaabane F. (2015) Feature extraction using PCA for VHR satellite image time series spatio-temporal classification. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, pp. 485–488. DOI: 10.1109/IGARSS.2015.7325806.
14.   Thabeng O. L., Merlo S., Adam E. (2019) High-resolution remote sensing and advanced classification techniques for the prospection of archaeological sites markers: The case of dung deposits in the Shashi-Limpopo confluence area (southern Africa). Journal of Archaeological Science, no. 102, pp. 48–60. DOI: 10.1016/j.jas.2018.12.003.
15.   Traviglia A., Torsello A. (2017) Landscape Pattern Detection in Archaeological Remote Sensing. Geosciences, no. 7(4):128, DOI: 10.3390/geosciences7040128.
16.   Ulaby F. T., Kouyate F., Brisco B., Williams T. H. L. (1986) Textural information in SAR images. IEEE Transactions on Geoscience and Remote Sensing, no. 2, pp. 235–245. DOI: 10.1109/TGRS.1986.289643.
17.   Zhurbin I. V., Borisov A. V. (2020) Non-destructive approach to studying medieval settlements destroyed by ploughing: combining aerial photography, geophysical and soil surveys. Archaeological Prospection, no. 27, pp. 343–360. DOI: 10.1002/arp.1778.
18.   Zlobina A. G., Shaura A. S., Zhurbin I. V., Bazhenova A. I. (2021) Algorithm for statistical analysis of multispectral survey data to identify the anthropogenic impact of the 19th century on the natural environment. Pattern Recognition and Image Analysis, no. 31 (2), pp. 345–355. DOI: 10.1134/S1054661821020176.
Citation:
Zhurbin I.V., 
Zlobina A.G., 
Shaura A.S., 
Bazhenova A.I., 
(2023) Archaeological sites interpretation based on segmentation of multispectral aerial data. Geodesy and cartography = Geodezia i Kartografia, 84(5), pp. 52-63. (In Russian). DOI: 10.22389/0016-7126-2023-995-5-52-63