ISSN 0016-7126 (Print)
ISSN 2587-8492 (Online)
1. Ivanov A. G., Ivanova M. G., Ostanina T. I., Shutova N. I. Arkheologicheskaya karta severnykh raionov Udmurtii. Izhevsk: UIIYaL UrO RAN, 2004, 276 p. |
2. Ivanova M. G. Gorodishche Gur'yakar: Rezul'taty issledovanii 1979. Srednevekovye pamyatniki basseina r. Cheptsy, Izhevsk: Nauch.-issled. in-t pri Sovete Ministrov Udmurtskoi ASSR, 1982, pp. 3–26. |
3. Luppov P. N. Dokumenty po istorii Udmurtii XV–XVII vekov. Izhevsk: Udmurtskoe knizhnoe izd-vo, 1958, 422 p. |
4. Abate N., Elfadaly A., Masini N., Lasaponara R. (2020) Multitemporal 2016–2018 Sentinel-2 data enhancement for landscape archaeology: The case study of the Foggia Province, southern Italy. Remote Sensing, no. 12 (8), pp. 1309. DOI: 10.3390/rs12081309. |
5. Alpaydin E. (2010) Introduction to machine learning, 2nd ed. MIT Press, London, 539 p. |
6. Calinski T., Harabasz J. (1974) A dendrite method for cluster analysis. Communications in Statistics, no. 3, pp. 1–27. DOI: 10.1080/03610927408827101. |
7. Le Hegarat-Mascle S., Vidal-Madjar D., Dinstein I. (1973) Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics, no. 3, pp. 610–621. DOI: 10.1109/TSMC.1973.4309314. |
8. Jollife I. T. (2002) Principal components analysis, 2nd ed. Springer, New York, 487 p. |
9. Kallepalli A., Kumar A., Khoshelham K., James D. B. (2016) Application of spectral and spatial indices for specific class identification in Airborne Prism Experiment (APEX) imaging spectrometer data for improved land cover classification. SPIE Remote Sensing, no. 100050Z, DOI: 10.1117/12.2241430. |
10. Kwak G.-H., Park N.-W. (2019) Impact of texture information on crop classification with machine learning and UAV images. Applied Science, no. 9(4):643, DOI: 10.3390/app9040643. |
11. Luo L., Wang X., Guo H., Lasaponara R., Zong X., Masini N., Wang G., Shi P., Khatteli H., Chen F., Tariq Sh., Shao J., Bachagha N., Yang R., Yao Y. (2019) Airborne and spaceborne remote sensing for archaeological and cultural heritage applications: A review of the century (1907–2017). Remote Sensing of Environment, no. 232, pp. 111280. DOI: 10.1016/j.rse.2019.111280. |
12. Noviello M., Ciminale M., De Pasquale V. (2013) Combined application of pansharpening and enhancement methods to improve archaeological cropmark visibility and identification in QuickBird imagery: two case studies from Apulia, Southern Italy. Journal of Archaeological Science, no. 40 (10), pp. 3604–3613. DOI: 10.1016/j.jas.2013.04.013. |
13. Rejichi S., Chaabane F. (2015) Feature extraction using PCA for VHR satellite image time series spatio-temporal classification. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, pp. 485–488. DOI: 10.1109/IGARSS.2015.7325806. |
14. Thabeng O. L., Merlo S., Adam E. (2019) High-resolution remote sensing and advanced classification techniques for the prospection of archaeological sites markers: The case of dung deposits in the Shashi-Limpopo confluence area (southern Africa). Journal of Archaeological Science, no. 102, pp. 48–60. DOI: 10.1016/j.jas.2018.12.003. |
15. Traviglia A., Torsello A. (2017) Landscape Pattern Detection in Archaeological Remote Sensing. Geosciences, no. 7(4):128, DOI: 10.3390/geosciences7040128. |
16. Ulaby F. T., Kouyate F., Brisco B., Williams T. H. L. (1986) Textural information in SAR images. IEEE Transactions on Geoscience and Remote Sensing, no. 2, pp. 235–245. DOI: 10.1109/TGRS.1986.289643. |
17. Zhurbin I. V., Borisov A. V. (2020) Non-destructive approach to studying medieval settlements destroyed by ploughing: combining aerial photography, geophysical and soil surveys. Archaeological Prospection, no. 27, pp. 343–360. DOI: 10.1002/arp.1778. |
18. Zlobina A. G., Shaura A. S., Zhurbin I. V., Bazhenova A. I. (2021) Algorithm for statistical analysis of multispectral survey data to identify the anthropogenic impact of the 19th century on the natural environment. Pattern Recognition and Image Analysis, no. 31 (2), pp. 345–355. DOI: 10.1134/S1054661821020176. |
(2023) Archaeological sites interpretation based on segmentation of multispectral aerial data. Geodesy and cartography = Geodezia i Kartografia, 84(5), pp. 52-63. (In Russian). DOI: 10.22389/0016-7126-2023-995-5-52-63 |