DOI: 
10.22389/0016-7126-2023-997-7-38-46
1 Penshin I.N.
Year: 
№: 
997
Pages: 
38-46

State University Of Land Use Planning

1, 
Abstract:
In this paper, we consider the Unified Camera Model and its properties, as well as investigate and apply the improved Double-Spherical one (DS-model) in the task of restoring exterior and interior orientation elements for a set of images with ultra-wide-angle fisheye lens. The use of panoramic cameras in photogrammetry issues is a new trend, while the spherical model fully inherits the properties of the classical central-projection sample. The mathematical concept of using it is presented, as well as the solution of the optimization problem of calculating the elements of the internal and external orientation of the camera through the Gauss-Newton method, which is relevant for the tasks of reconstructing a three-dimensional scene and developing an optical SLAM based on a multi-camera system with ultra-wide-angle lenses, is implemented. In this work, epipolar geometry methods, digital image processing methods, statistical, numerical, and optimization ones were used. The results obtained enable evaluating the applicability of the DS-model for three-dimensional reconstruction of scenes during external and internal monitoring of buildings and structures, restoration of the motion trajectory and position in space for mobile systems with an installed camera, solving matters such as Perspective-n-Point for restoring the relative orientation between different active and passive sensors
References: 
1.   Borodulina S. V., Zaitsev Yu. A. Teoreticheskie osnovy postroeniya nelineinykh perspektivnykh izobrazhenii. Vestnik Saratovskogo gosudarstvennogo tekhnicheskogo universiteta, 2006, Vol. 4, no. 2 (17), pp. 67–76.
2.   Gorbatsevich V. V., Onishchik A. L. Gruppy Li preobrazovanii. Itogi nauki i tekhniki. Ser. «Sovremennye problemy matematiki. Fundamental'nye napravleniya», Moskva: VNITI, 1988, Vol. 20, pp. 103–240.
3.   Goshin E. V., Fursov V. A. Reshenie zadachi avtokalibrovki kamery s ispol'zovaniem metoda soglasovannoi identifikatsii. Komp'yuternaya optika, 2012, Vol. 36, no. 4, pp. 605–610.
4.   Popov A. A., Boboev Sh. A. Postroenie robastnykh regressionnykh modelei po metodu LS-SVM s ispol'zovaniem funktsii poter' Kh'yubera i vzveshivaniya nablyudenii. Obrabotka informatsii i matematicheskoe modelirovanie: Materialy Rossiiskoi nauchno-tekhnicheskoi konferentsii, Novosibirsk: Izd-vo Sibirskogo gosudarstvennogo universiteta telekommunikatsii i informatiki, 2016, pp. 118–124.
5.   Stepanov D. N. Matematicheskie modeli polucheniya stereoizobrazhenii s dvukhzerkal'nykh katadioptricheskikh sistem s uchetom distorsii ob"ektivov. Komp'yuternaya optika, 2019, Vol. 43, no. 1, pp. 105–114.
6.   Aghayari S., Saadatseresht M., Omidalizarandi M., Neumannet I. (2017) Geometric calibration of full spherical panoramic Ricoh-Theta camera. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, no. IV-1/W1, pp. 237–245. DOI: 10.5194/isprs-annals-IV-1-W1-237-2017.
7.   Awaludin M., Yasin V. (2020) Application of Oriented Fast And Rotated Brief (Orb) and Bruteforce Hamming in Library OpenCV for Classification of Plants. Journal of Information System, Applied, Management, Accounting and Research, Volume 4, no. 3, pp. 51–59.
8.   Campos M. B., Tommaselli A. M. G., Junior J. M., Honkavaara E. (2018) Geometric model and assessment of a dual-fisheye imaging system. The Photogrammetric Record, no. 33 (5), pp. 243–263. DOI: 10.1111/phor.12240.
9.   Georgiou T., Liu Y., Chen W., Lewet M. (2020) A survey of traditional and deep learning-based feature descriptors for high dimensional data in computer vision. International Journal of Multimedia Information Retrieval, no. 9 (11), pp. 135–170. DOI: 10.1007/s13735-019-00183-w.
10.   Geyer C., Daniilidis K. (2000) A unifying theory for central panoramic systems and practical implications. Computer Vision – ECCV 2000. 6th European Conference on Computer Vision, Dublin, Ireland, June 26 – July 1, 2000, Proceedings, Part II. pp. 445–461.
11.   Huang M., Wu J., Zhiyong P., Zhaoet X. (2022) High-precision calibration of wide-angle fisheye lens with radial distortion projection ellipse constraint (RDPEC). Machine Vision and Applications, no. 33 (3), pp. 1–23.
12.   Ji S., Qin Z., Shanet J., Lual M. (2020) Panoramic SLAM from a multiple fisheye camera rig. ISPRS Journal of Photogrammetry and Remote Sensing, no. 159, pp. 169–183. DOI: 10.1016/j.isprsjprs.2019.11.014.
13.   Singh A., Paigwar A., Saroyaet M. (2018) Design and motion analysis of compliant omnidirectional spherical modular snake robot (cosmos). IEEE/IFtoMM Int. Conference on Reconfigurable Mechanisms and RobotsAt: Tu Delft, Netherlands. pp. 1–10.
14.   Taketomi T., Uchiyama H., Ikeda S. (2017) Visual SLAM algorithms: A survey from 2010 to 2016. IPSJ Transactions on Computer Vision and Applications, no. 9 (1), pp. 1–11. DOI: 10.1186/s41074-017-0027-2.
15.   Usenko V., Demmel N., Cremers D. (2018) The double sphere camera model. International Conference on 3D Vision (3DV). pp. 552–560.
16.   Zhang Y., Huang F. (2021) Panoramic visual slam technology for spherical images. Sensors, no. 21 (3), pp. 705. DOI: 10.3390/s21030705.
Citation:
Penshin I.N., 
(2023) Application of a spherical camera model for solving photogrammetric tasks. Geodesy and cartography = Geodezia i Kartografia, 84(7), pp. 38-46. (In Russian). DOI: 10.22389/0016-7126-2023-997-7-38-46
Publication History
Received: 14.12.2022
Accepted: 28.07.2023
Published: 20.08.2023

Content

2023 July DOI:
10.22389/0016-7126-2023-997-7