UDC: 
DOI: 
10.22389/0016-7126-2024-1013-11-15-24
1 Klimina E.A.
2 Shikhov A.N.
3 Tarasov A.V.
Year: 
№: 
1013
Pages: 
15-24

Perm State National Research University

1, 
2, 
3, 
Abstract:
In this study, we created the maps of natural fire hazard for Perm krai and Sverdlovsk oblast, based on the Random Forest Regressor machine learning model. It was trained with the materials on wildfires occurred in Perm krai in 2010–2022. Publicly available datasets characterizing forest cover, climate, terrain and the degree of anthropogenic impact on the territory were used as predictors. The most important among them are the distribution of pine forests, bogs (positive correlation), and elevation (negative correlation). For the territory of Perm krai, we found a good accordance of predicted hazard to observed spatial distribution of forest fires and the corresponding losses. The data for Sverdlovsk oblast were used as an independent sample, and here the same above mentioned correlation was also revealed. Over 60 % of the occasions and their area fall into the territories with high estimated fire hazard. The created maps can be used along with weather indices to improve operational forecasting of wildfires
This study is funded by the Russian Scientific Foundation and the Perm Krai, Grant No. 24-27-20111
References: 
1.   Bartalev S. A., Egorov V. A., Zharko V. O., Lupyan E. A., Plotnikov D. E., Khvostikov S. A., Shabanov N. V. Sputnikovoe kartografirovanie rastitel'nogo pokrova Rossii. Moskva: IKI RAN, 2016, 208 p.
2.   Lupyan E. A., Bartalev S. A., Balashov I. V., Egorov V. A., Ershov D. V., Kobets D. A., Sen'ko K. S., Stytsenko F. V., Sychugov I. G. Sputnikovyi monitoring lesnykh pozharov v 21 veke na territorii Rossiiskoi Federatsii (tsifry i fakty po dannym detektirovaniya aktivnogo goreniya). Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, no. 6, pp. 158–175. DOI: 10.21046/2070-7401-2017-14-6-158-175.
3.   Shikhov A.N., Abdullin R.K., Semakina A.V. (2020) Mapping forest areas threatened by fires and windthrows (on the example of the Ural territory). Geodezia i Kartografia, 81(4), pp. 19-30. (In Russian). DOI: 10.22389/0016-7126-2020-958-4-19-30.
4.   Shikhov A. N., Semakina A. V. Kartografirovanie rastitel'nogo pokrova Permskogo kraya po sputnikovym snimkam Landsat. Geograficheskii vestnik, 2022, no. 1, pp. 150–164. DOI: 10.17072/2079-7877-2022-1-150-164.
5.   Cao Y., Wang M., Liu K. (2017) Wildfire Susceptibility Assessment in Southern China: A Comparison of Multiple Methods. International Journal of Disaster Risk Science, no. 8, pp. 164–181. DOI: 10.1007/s13753-017-0129-6.
6.   Falk D. A., Miller C. M., McKenzie D., Black A. E. (2007) Cross-scale analysis of fire regimes. Ecosystems, no. 10, pp. 809–826. DOI: 10.1007/s10021-007-9070-7.
7.   Fick S. E., Hijmans R. J. (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, no. 37, pp. 4302–4315. DOI: 10.1002/joc.5086.
8.   Giglio L., Schroeder W., Justice C. O. (2016) The collection 6 MODIS active fire detection algorithm and fire products. Remote Sensing of Environment, no. 178, pp. 31–41. DOI: 10.1016/j.rse.2016.02.054.
9.   Gigović L., Pourghasemi H. R., Drobnjak S., Bai S. (2019) Testing a new ensemble model based on SVM and random forest in forest fire susceptibility assessment and its mapping in Serbia’s Tara National Park. Forests, no. 10 (5), 408 p. DOI: 10.3390/f10050408.
10.   Hansen M. C., Potapov P. V., Moore R., Hancher M., Turubanova S. A., Tyukavina A., Thau D., Stehman S. V. (2013) High-resolution global maps of 21st-century forest cover change. Science, Volume 6160, no. 342 , pp. 850–853. DOI: 10.1126/science.1244693.
11.   Jaafari A., Pourghasemi H. R. (2019) Factors influencing regional-scale wildfire probability in Iran: an application of Random Forest and Support Vector Machine. Spatial Modeling in GIS and R for Earth and Environmental Sciences. pp. 607–619. DOI: 10.1016/B978-0-12-815226-3.00028-4.
12.   Krylov A., Potapov P., Loboda T., Tyukavina A., Turubanova S., Hansen M. C., McCarty J. L. (2014) Remote sensing estimates of stand-replacement fires in Russia, 2002-2011. Environmental Research Letters, no. 9 (10),
13.   Moritz M. A., Parisien M. A., Batllori E., Krawchuk M. A., Van Dorn J., Ganz D. J., Hayhoe K. (2012) Climate change and disruptions to global fire activity. Ecosphere, no. 3 (6), pp. 1–22. DOI: 10.1890/ES11-00345.1.
14.   Novo A., Fariñas-Álvarez N., Martínez-Sánchez J., González-Jorge H., Fernández-Alonso J. M., Lorenzo H. (2020) Mapping Forest Fire Risk – A Case Study in Galicia (Spain). Remote Sensing, no. 12 (22) 3705, DOI: 10.3390/rs12223705.
15.   Oliveira S., Oehler F., San-Miguel-Ayanz J., Camia A., Pereira J. M. (2012) Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest. Forest Ecology and Management, no. 275, pp. 117–129. DOI: 10.1016/j.foreco.2012.03.003.
16.   Piyush J., Sean C. P., Coogan S. G. S., Crowley M., Taylor S., Flannigan M. D. (2020) A review of machine learning applications in wildfire science and management. Environmental Review, no. 28 (4), pp. 478–505. DOI: 10.1139/er-2020-0019.
17.   Potapov P., Li X., Hernandez-Serna A., et al. (2020) Mapping and monitoring global forest canopy height through integration of GEDI and Landsat data. Remote Sensing of Environment, no. 253 112165, DOI: 10.1016/j.rse.2020.112165.
18.   Sachdeva S., Bhatia T., Verma A. K. (2018) GIS-based evolutionary optimized Gradient Boosted Decision Trees for forest fire susceptibility mapping. Natural Hazards, no. 92 (3), pp. 1399–1418. DOI: 10.1007/s11069-018-3256-5.
19.   Seidl R., Fernandes P. M., Fonseca T. F., Gillet F., Jönsson A. M., Merganičová K., Netherer S., Arpaci A., Bontemps J.-D., Bugmann H., González-Olabarria J. R., Lasch P., Meredieu C., Moreira F., Schelhaas M.-J., Mohren F. (2011) Modelling natural disturbances in forest ecosystems: A review. Ecological Modelling, no. 222(4), pp. 903-924. DOI: 10.1016/j.ecolmodel.2010.09.040.
20.   Sherstyukov B. G., Sherstyukov A. B. (2014) Assessment of increase in forest fire risk in Russia till the late 21st century based on scenario experiments with fifth-generation climate models. Russian Meteorology and Hydrology, no. 39, pp. 292–301. DOI: 10.3103/S1068373914050021.
21.   Tyukavina A., Potapov P., Hansen M. C., et al. (2022) Global Trends of Forest Loss Due to Fire From 2001 to 2019. Frontiers in Remote Sensing, no. 3 825190, DOI: 10.3389/frsen.2022.825190.
22.   Vecín-Arias D., Castedo-Dorado F., Ordóñez C., Rodríguez-Pérez J. R. (2016) Biophysical and lightning characteristics drive lightning-induced fire occurrence in the central plateau of the Iberian Peninsulaю Agricultural and Forest. Meteorology, no. 225 (15), pp. 36–47. DOI: 10.1016/j.agrformet.2016.05.003.
Citation:
Klimina E.A., 
Shikhov A.N., 
Tarasov A.V., 
(2024) Mapping natural fire hazards in Middle Urals based on random forest model. Geodesy and cartography = Geodezia i Kartografia, 85(11), pp. 15-24. (In Russian). DOI: 10.22389/0016-7126-2024-1013-11-15-24
Publication History
Received: 12.08.2024
Accepted: 18.11.2024
Published: 20.12.2024

Content

2024 November DOI:
10.22389/0016-7126-2024-1013-11