DOI: 
10.22389/0016-7126-2024-1013-11-35-44
1 Shurygina A.A.
2 Samsonov T.E.
3 Lurie I.K.
Year: 
№: 
1013
Pages: 
35-44

Lomonosov Moscow State University (MSU)

1, 
2, 
3, 
Abstract:
Global small-scale hydrological modeling datasets are in demand in many geosciences. The results of corresponding simulations include flow directions, catchment area, watershed delineation and stream networks. Regardless of the method of obtaining global product, one will face the task of processing at least continent-scale datasets, which may be time-consuming or hardware-expensive. The recent research on hydrological modeling shows that calculations performed on a hexagonal mesh grid outperformed those on a rectangular one. Therefore, there is increasing interest in globalscale hydrological simulations on hexagonal grids. Discrete global grid systems (DGGS) which are spatial reference systems that use a hierarchy of equal area tessellations to partition the surface of the spherical Earth into grid cells; it seems to be an efficient way to manage big geospatial data. There are studies where hydrological algorithms are successfully applied on hexagonal DGGS, although locally. This research presents an algorithm for parallel computation of flow directions and upslope area on the hexagonal DGGS using the example of the African hydrological system. Referring to the hierarchical nature of DGGS, we cut the study area into tiles along the cells’ boundaries of one of the small-scale levels. Hydrological modeling is then performed on the desired level child cells of each tile. Afterwards the results are stitched into a single coverage. This study is practical not only for hydrological analysis, but also for combining the results of raster algebra analysis in any other areas
The study was supported by the Russian Science Foundation grant No. 23-27-00232
References: 
1.   Koshel' S. M., Entin A. Sovremennye metody rascheta raspredeleniya poverkhnostnogo stoka po tsifrovym modelyam rel'efa. Geomorfologi. Sbornik statei. Vypusk 6. Sovremennye metody i tekhnologii tsifrovogo modelirovaniya rel'efa v naukakh o Zemle, Moskva: Media-Press, 2016, pp. 24–34.
2.   Shurygina A.A., Samsonov T.E. (2023) Estimating information volume change in hexagonal descrete global grid systems with aperture 7. Geodezia i Kartografia, 84(12), pp. 27-37. (In Russian). DOI: 10.22389/0016-7126-2023-1002-12-27-37.
3.   Arge L., Chase J. S., Halpin P., Toma L., Vitter J. S., Urban D., Wickremesinghe R. (2003) Efficient Flow Computation on Massive Grid Terrain Datasets. GeoInformatica, no. 7, pp. 283–313. DOI: 10.1023/A:1025526421410.
4.   Barnes R. (2016) Parallel Priority-Flood depression filling for trillion cell digital elevation models on desktops or clusters. Computers and Geosciences, no. 96, pp. 56–68. DOI: 10.1016/j.cageo.2016.07.001.
5.   Barnes R. (2017) Parallel non-divergent flow accumulation for trillion cell digital elevation models on desktops or clusters. Environmental Modelling and Software, no. 92, pp. 202–212. DOI: 10.1016/j.envsoft.2017.02.022.
6.   Barnes R. (2018) RichDEM: High-performance terrain analysis. DOI: 10.7287/peerj.preprints.27099v1.
7.   Barnes R., Lehman C., Mulla D. (2014) Priority-flood: An optimal depression-filling and watershed-labeling algorithm for digital elevation models. Computers and Geosciences, no. 62, pp. 117–127. DOI: 10.1016/j.cageo.2013.04.024.
8.   Eilander D., Van Verseveld W., Yamazaki D., Weerts A., Winsemius H. C., Ward P. J. (2021) A hydrography upscaling method for scale-invariant parametrization of distributed hydrological models. Hydrology and Earth System Sciences, no. 25 (9), pp. 5287–5313. DOI: 10.5194/hess-25-5287-2021.
9.   Fekete B. M., Vörösmarty C. J., Lammers R. B. (2001) Scaling gridded river networks for macroscale hydrology: Development, analysis, and control of error. Water Resources Research, no. 37 (7), pp. 1955–1967. DOI: 10.1029/2001WR900024.
10.   Florinsky I. V. (2017) Spheroidal equal angular DEMs: The specificity of morphometric treatment. Transactions in GIS, no. 21 (6), pp. 1115–1129. DOI: 10.1111/tgis.12269.
11.   Gudmundsson L., Boulange J., Do H. X., et al. (2021) Globally observed trends in mean and extreme river flow attributed to climate change. Science, no. 371 (6534), pp. 1159–1162. DOI: 10.1126/science.aba3996.
12.   Hutchinson M. F. (1989) A New procedure for gridding elevation and stream line data with automatic removal of spurious pits. Journal of Hydrology, Volume 106, no. 3-4, pp. 211–232. DOI: 10.1016/0022-1694(89)90073-5.
13.   Jenson S. K. (1991) Applications of hydrologic information automatically extracted from digital elevation models. Hydrological Processes, no. 5 (1), pp. 31–44. DOI: 10.1002/hyp.3360050104.
14.   Jenson S. K., Domingue J. O. (1988) Extracting Topographic Structure from Digital Elevation Data for Geographic Information System Analysis. Photogrammetric Engineering and Remote Sensing, Volume 54, no. 11 , pp. 1593–1600.
15.   Lehner B., Grill G. (2013) Global river hydrography and network routing: Baseline data and new approaches to study the world’s large river systems. Hydrological Processes, Volume 27, no. 15 , pp. 2171–2186. DOI: 10.1002/hyp.9740.
16.   Li M., McGrath H., Stefanakis E. (2022) Geovisualization of Hydrological Flow in Hexagonal Grid Systems. Geographies, no. 2 (2), pp. 227–244. DOI: 10.3390/geographies2020016.
17.   Liao C., Tesfa T., Duan Z., Leung L. R. (2020) Watershed delineation on a hexagonal mesh grid. Environmental Modelling and Software, no. 128 104702, DOI: 10.1016/j.envsoft.2020.104702.
18.   Liao C., Zhou T., Xu D., et al. (2022) Advances in hexagon mesh-based flow direction modeling. Advances in Water Resources, no. 160 104099, DOI: 10.1016/j.advwatres.2021.104099.
19.   Lucas-Picher P., Arora V. K., Caya D., Laprise R. (2003) Implementation of a large-scale variable velocity river flow routing algorithm in the Canadian Regional Climate Model (CRCM). Atmosphere-Ocean, no. 41 (2), pp. 139–153. DOI: 10.3137/ao.410203.
20.   Ma Y., Li G., Yao X., Cao Q., Zhao L., Wang S., Zhang L. (2021) A Precision Evaluation Index System for Remote Sensing Data Sampling Based on Hexagonal Discrete Grids. ISPRS International Journal of Geo-Information, no. 10 (3), pp. 194. DOI: 10.3390/ijgi10030194.
21.   Martz L. W., Garbrecht J. (1998) The treatment of flat areas and depressions in automated drainage analysis of raster digital elevation models. Hydrological processes, no. 12 (6), pp. 843–855. DOI: 10.1002/(SICI)1099-1085(199805)12:63.0.CO;2-R.
22.   Miller J. R., Russell G. L., Caliri G. (1994) Continental-Scale River Flow in Climate Models. Journal of Climate, no. 7 (6), pp. 914–928. DOI: 10.1175/1520-0442(1994)0072.0.CO;2.
23.   O’Callaghan J. F., Mark D. M. (1984) The extraction of drainage networks from digital elevation data. Computer vision, graphics, and image processing, Volume 28, no. 3 , pp. 323–344. DOI: 10.1016/S0734-189X(84)80011-0.
24.   Olivera F., Lear M. S., Famiglietti J. S., Asante K. (2002) Extracting low-resolution river networks from high-resolution digital elevation models. Water Resources Research, no. 38 (11), pp. 13-1–13-8. DOI: 10.1029/2001WR000726.
25.   Paz A. R., Collischonn W., Lopes Da Silveira A. L. (2006) Improvements in large-scale drainage networks derived from digital elevation models. Water Resources Research, no. 42 (8), pp. 2005WR004544. DOI: 10.1029/2005WR004544.
26.   Planchon O., Darboux F. (2002) A fast, simple and versatile algorithm to fill the depressions of digital elevation models. CATENA, no. 46 (2–3), pp. 159–176. DOI: 10.1016/S0341-8162(01)00164-3.
27.   Shannon C. E. (1948) A mathematical theory of communication. The Bell system technical journal, Nokia Bell Labs, no. 27 (3), pp. 379–423.
28.   Wallis C., Watson D., Tarboton D., Wallace R. (2009) Parallel flow-direction and contributing area calculation for hydrology analysis in digital elevation models. Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications, no. 11 (8) 7,
29.   Wang L., Ai T., Shen Y., Li J. (2020) The isotropic organization of DEM structure and extraction of valley lines using hexagonal grid. Transactions in GIS, no. 24 (2), pp. 483–507. DOI: 10.1111/tgis.12611.
30.   Wang L., Liu H. (2006) An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling. International Journal of Geographical Information Science, no. 20 (2), pp. 193–213. DOI: 10.1080/13658810500433453.
31.   Yamazaki D., Ikeshima D., Sosa J., Bates P. D., Allen G. H., Pavelsky T. M. (2019) MERIT Hydro: A High-Resolution Global Hydrography Map Based on Latest Topography Dataset. Water Resources Research, no. 55 (6), pp. 5053–5073. DOI: 10.1029/2019WR024873.
Citation:
Shurygina A.A., 
Samsonov T.E., 
Lurie I.K., 
(2024) Parallel calculation of flow directions on hexagonal discrete global grid systems. Geodesy and cartography = Geodezia i Kartografia, 85(11), pp. 35-44. (In Russian). DOI: 10.22389/0016-7126-2024-1013-11-35-44
Publication History
Received: 14.08.2024
Accepted: 22.11.2024
Published: 20.12.2024

Content

2024 November DOI:
10.22389/0016-7126-2024-1013-11