DOI: 
10.22389/0016-7126-2024-1014-12-18-29
1 Karpik A.P.
2 Malikov A.O.
3 Mamaev D.S.
4 Mareev A.V.
Year: 
№: 
1014
Pages: 
18-29

Siberian State University of Geosystems and Technologies

1, 
2, 
3, 
4, 
Abstract:
The authors present a study of a geodetic monitoring-ringing observation system based on lowcost phased-array GNSS hardware, the open-source MonCenterLib software and the proprietary MonCenter GNSS Reveiver. The subject of the research was to evaluate the sensitivity of the mentioned system consisting of multiple stations to vertical impulse motions. As a result of the study it was found out that the developed device is sensitive to impulse vertical displacements of 10 mm and higher. At the same time, its efficiency in determining the motion according to the F1 measure is estimated at 67 %. The models of point movements obtained by processing the measurements in the “static” mode and analyzing the movements of the stations in the geodetic network are able to determine the displacements more accurately, compared to the models built based on processing GNSS measurements in the kinematic mode. Thus, the geodetic network based on the said GNSS receivers and open-source software, in general, allows increasing the observability of geodetic monitoring systems
The study was supported by the state budget research work “Automatic geodetic monitoring of natural environment and engineering structures with low-cost high-precision sensors of vertical displacements in the Far North” (FEFS-2023-0003)
References: 
1.   Antonovich K.M. Ispol'zovanie sputnikovyh radionavigacionnyh sistem v geodezii. M.: FGUP «Kartgeocentr», 2006, V 2-h tomah. Vol. 2, 359 p.
2.   Evstaf'ev O. V. Nazemnaya infrastruktura GNSS dlya tochnogo pozitsionirovaniya. Moskva: Prospekt, 2009, 48 p.
3.   Zhuravleva E. V. Preimushchestva ispol'zovaniya postoyanno deistvuyushchikh bazovykh stantsii. Geoprofi, 2008, no. 4, pp. 43–45.
4.   Karpik A. P., Mareev A. V., Mamaev D. S. Svobodnoe programmnoe obespechenie dlya geodezicheskogo monitoringa Moncenter. Vestnik SSUGT, 2022, Vol. 27, no. 5, pp. 43–54. DOI: 10.33764/2411-1759-2022-27-5-43-54.
5.   Primakov D. A., Shevchuk S. O., Cheremisina E. S. Geodezicheskie programmno-apparatnye sistemy na osnove perspektivnykh otechestvennykh priemnikov. Interekspo Geo-Sibir', 2021, Vol. 1, pp. 240–251. DOI: 10.33764/2618-981X-2021-1-240-251.
6.   Sokolov A. V., Kogogin D. A. Sravnitel'nyi analiz sinkhronnykh zapisei PES, poluchennykh na GNSS priemnikakh u-blox ZED-F9P i JAVAD TRE-3L. Materialy 20-i Mezhdunar. konf. «Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa», Moskva: IKI RAN, 2022, 392 p. DOI: 10.21046/20DZZconf-2022a.
7.   Sokhranov A. S. Faza 2 – novyi rossiiskii byudzhetnyi bazovyi mnogosistemnyi GNSS-priemnik. Geoprofi, 2018, no. 5, pp. 16–18.
8.   Shevchuk S. O., Petrov K. V., Cheremisina E. S. Vysokotochnaya GNSS-apparatura otechestvennogo proizvodstva. Interekspo Geo-Sibir', 2020, Vol. 1, no. 2, pp. 119–127. DOI: 10.33764/2618-981X-2020-1-2-119-127.
9.   Artese G., Perrelli M., Artese S., Meduri S., Brogno N. (2015) POIS, a low-cost tilt and position sensor: Design and first tests. Sensors, no. 15 (5), pp. 10806–10824. DOI: 10.3390/s150510806.
10.   Bak M., Çelik R. N. (2023) Web-NDefA: Open-source and web-based online platform for 3-D deformation analysis of geodetic networks. SoftwareX, Volume 24, no. 101523.,
11.   (2019) Cost effective precise positioning with GNSS. ed. L. A. Lipatnikov, S. O. Shevchuk. FIG publication. no. 74, 84 p.
12.   Curone D., Savarese G., Antonini M., et al. (2023) An innovative low-power, low-cost, multi-constellation geodetic-grade global navigation satellite system reference station for the densification of permanent networks: The GREAT project. Sensors, no. 23 (13), DOI: 10.3390/s23136032.
13.   Engel P. (2017) Deformation monitoring in the Internet of Things. Implementation of a multi-platform software package for modern sensor networks in engineering geodesy. 7th International Conference on Engineering Surveying. Lisbon, pp. 192–200.
14.   Estey L. H., Meertens C. M. (1999) TEQC: the multi-purpose toolkit for GPS/GLONASS data. GPS Solutions, Volume 3, no. 1, pp. 42–49. DOI: 10.1007/PL00012778.
15.   Gutov S. S., Li V. T. (2015) Automated satellite system for strain monitoring at the Sayano-Shushenskaya hydroelectric power plant: Practical experience in its introduction. Power Technology and Engineering, no. 49 (4), pp. 252–257. DOI: 10.1007/s10749-015-0610-6.
16.   Hamza V., Stopar B., Ambrožič T., Turk G., Sterle O. (2020) Testing Multi-Frequency Low-Cost GNSS Receivers for Geodetic Monitoring Purposes. Sensors, no. 20 (16), DOI: 10.3390/s20164375.
17.   Huang K.-Y., Juang J.-C., Tsai Y.-F., Lin C.-T. (2021) Efficient FPGA implementation of a dual-frequency GNSS receiver with robust inter-frequency aiding. Sensors, no. 21 (14), DOI: 10.3390/s21144634.
18.   Li C. K., Ching K. E., Chen K. H. (2019) The ongoing modernization of the Taiwan semi-dynamic datum based on the surface horizontal deformation model using GNSS data from 2000 to 2016. Journal of Geodesy, no. 93 (11), pp. 1543–1558. DOI: 10.1007/s00190-019-01267-5.
19.   Marut G., Hadas T., Nosek J. (2024) Intercomparison of multi-GNSS signals characteristics acquired by a low-cost receiver connected to various low-cost antennas. GPS Solutions, Volume 28, no. 82, DOI: 10.1007/s10291-024-01628-4.
20.   Neumann I., Kutterer H. (2007) Congruence tests and outlier detection in deformation analysis with respect to observation imprecision. Journal of Applied Geodesy, no. 1 (1), pp. 1–7.
21.   Powers D. ћ. W. (2011) Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness and Correlation. Journal of Machine Learning Technologies, no. 2 (1), pp. 37–63. DOI: 10.9735/2229-3981.
22.   Vaclavovic P., Dousa J. (2015) G-Nut/Anubis: Open-Source Tool for Multi-GNSS Data Monitoring with a Multipath Detection for New Signals, Frequencies and Constellations. International Association of Geodesy Symposia book series (IAG SYMPOSIA), no. 143, pp. 775–782. DOI: 10.1007/1345_2015_97.
23.   Zhang L., Schwieger V. (2018) Investigation of a L1-optimized choke ring ground plane for a low-cost GPS receiver-system. Journal of Applied Geodesy, no. 12 (1), pp. 55–64. DOI: 10.1515/jag-2017-0026.
Citation:
Karpik A.P., 
Malikov A.O., 
Mamaev D.S., 
Mareev A.V., 
(2024) Estimating sensitivity to vertical movements of geodetic monitoring network with low-cost GNSS consumer navigation equipment. Geodesy and cartography = Geodezia i Kartografia, 85(12), pp. 18-29. (In Russian). DOI: 10.22389/0016-7126-2024-1014-12-18-29