ISSN 0016-7126 (Print)
ISSN 2587-8492 (Online)
1. Antonovich K.M. Ispol'zovanie sputnikovyh radionavigacionnyh sistem v geodezii. M.: FGUP «Kartgeocentr», 2006, V 2-h tomah. Vol. 2, 359 p. |
2. Evstaf'ev O. V. Nazemnaya infrastruktura GNSS dlya tochnogo pozitsionirovaniya. Moskva: Prospekt, 2009, 48 p. |
3. Zhuravleva E. V. Preimushchestva ispol'zovaniya postoyanno deistvuyushchikh bazovykh stantsii. Geoprofi, 2008, no. 4, pp. 43–45. |
4. Karpik A. P., Mareev A. V., Mamaev D. S. Svobodnoe programmnoe obespechenie dlya geodezicheskogo monitoringa Moncenter. Vestnik SSUGT, 2022, Vol. 27, no. 5, pp. 43–54. DOI: 10.33764/2411-1759-2022-27-5-43-54. |
5. Primakov D. A., Shevchuk S. O., Cheremisina E. S. Geodezicheskie programmno-apparatnye sistemy na osnove perspektivnykh otechestvennykh priemnikov. Interekspo Geo-Sibir', 2021, Vol. 1, pp. 240–251. DOI: 10.33764/2618-981X-2021-1-240-251. |
6. Sokolov A. V., Kogogin D. A. Sravnitel'nyi analiz sinkhronnykh zapisei PES, poluchennykh na GNSS priemnikakh u-blox ZED-F9P i JAVAD TRE-3L. Materialy 20-i Mezhdunar. konf. «Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa», Moskva: IKI RAN, 2022, 392 p. DOI: 10.21046/20DZZconf-2022a. |
7. Sokhranov A. S. Faza 2 – novyi rossiiskii byudzhetnyi bazovyi mnogosistemnyi GNSS-priemnik. Geoprofi, 2018, no. 5, pp. 16–18. |
8. Shevchuk S. O., Petrov K. V., Cheremisina E. S. Vysokotochnaya GNSS-apparatura otechestvennogo proizvodstva. Interekspo Geo-Sibir', 2020, Vol. 1, no. 2, pp. 119–127. DOI: 10.33764/2618-981X-2020-1-2-119-127. |
9. Artese G., Perrelli M., Artese S., Meduri S., Brogno N. (2015) POIS, a low-cost tilt and position sensor: Design and first tests. Sensors, no. 15 (5), pp. 10806–10824. DOI: 10.3390/s150510806. |
10. Bak M., Çelik R. N. (2023) Web-NDefA: Open-source and web-based online platform for 3-D deformation analysis of geodetic networks. SoftwareX, Volume 24, no. 101523., |
11. (2019) Cost effective precise positioning with GNSS. ed. L. A. Lipatnikov, S. O. Shevchuk. FIG publication. no. 74, 84 p. |
12. Curone D., Savarese G., Antonini M., et al. (2023) An innovative low-power, low-cost, multi-constellation geodetic-grade global navigation satellite system reference station for the densification of permanent networks: The GREAT project. Sensors, no. 23 (13), DOI: 10.3390/s23136032. |
13. Engel P. (2017) Deformation monitoring in the Internet of Things. Implementation of a multi-platform software package for modern sensor networks in engineering geodesy. 7th International Conference on Engineering Surveying. Lisbon, pp. 192–200. |
14. Estey L. H., Meertens C. M. (1999) TEQC: the multi-purpose toolkit for GPS/GLONASS data. GPS Solutions, Volume 3, no. 1, pp. 42–49. DOI: 10.1007/PL00012778. |
15. Gutov S. S., Li V. T. (2015) Automated satellite system for strain monitoring at the Sayano-Shushenskaya hydroelectric power plant: Practical experience in its introduction. Power Technology and Engineering, no. 49 (4), pp. 252–257. DOI: 10.1007/s10749-015-0610-6. |
16. Hamza V., Stopar B., Ambrožič T., Turk G., Sterle O. (2020) Testing Multi-Frequency Low-Cost GNSS Receivers for Geodetic Monitoring Purposes. Sensors, no. 20 (16), DOI: 10.3390/s20164375. |
17. Huang K.-Y., Juang J.-C., Tsai Y.-F., Lin C.-T. (2021) Efficient FPGA implementation of a dual-frequency GNSS receiver with robust inter-frequency aiding. Sensors, no. 21 (14), DOI: 10.3390/s21144634. |
18. Li C. K., Ching K. E., Chen K. H. (2019) The ongoing modernization of the Taiwan semi-dynamic datum based on the surface horizontal deformation model using GNSS data from 2000 to 2016. Journal of Geodesy, no. 93 (11), pp. 1543–1558. DOI: 10.1007/s00190-019-01267-5. |
19. Marut G., Hadas T., Nosek J. (2024) Intercomparison of multi-GNSS signals characteristics acquired by a low-cost receiver connected to various low-cost antennas. GPS Solutions, Volume 28, no. 82, DOI: 10.1007/s10291-024-01628-4. |
20. Neumann I., Kutterer H. (2007) Congruence tests and outlier detection in deformation analysis with respect to observation imprecision. Journal of Applied Geodesy, no. 1 (1), pp. 1–7. |
21. Powers D. ћ. W. (2011) Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness and Correlation. Journal of Machine Learning Technologies, no. 2 (1), pp. 37–63. DOI: 10.9735/2229-3981. |
22. Vaclavovic P., Dousa J. (2015) G-Nut/Anubis: Open-Source Tool for Multi-GNSS Data Monitoring with a Multipath Detection for New Signals, Frequencies and Constellations. International Association of Geodesy Symposia book series (IAG SYMPOSIA), no. 143, pp. 775–782. DOI: 10.1007/1345_2015_97. |
23. Zhang L., Schwieger V. (2018) Investigation of a L1-optimized choke ring ground plane for a low-cost GPS receiver-system. Journal of Applied Geodesy, no. 12 (1), pp. 55–64. DOI: 10.1515/jag-2017-0026. |
(2024) Estimating sensitivity to vertical movements of geodetic monitoring network with low-cost GNSS consumer navigation equipment. Geodesy and cartography = Geodezia i Kartografia, 85(12), pp. 18-29. (In Russian). DOI: 10.22389/0016-7126-2024-1014-12-18-29 |