DOI: 
10.22389/0016-7126-2024-1014-12-2-8
1 Murzabekov M.M.
2 Lopatin V.P.
3 Bobrov D.S.
4 Popadyev V.V.
Year: 
№: 
1014
Pages: 
2-8

FSUE «All-Russian Scientific Research Institute of Physical-Technical and Radiotechnical Measurements» (FSUE «VNIIFTRI»)

1, 
2, 
3, 

Roskadastr, PLC

4, 
Abstract:
The process of creating the Earth`s anomalous gravitational field’s parameters navigation-and-gravimetric maps includes interpolating measurement data into nodes of a regular grid with a given step and reducing them to a given height. To interpolate the said parameters to intermediate points, the remove-restore method has become widespread, it enables taking into account the influence of topographic masses, and there is a wide range of methods for their reduction. The authors examine the process of creating the above mentioned maps using the example of the Earth gravity anomaly real measurements in a foothill region. At the same time, the influence of topographic masses was taken into account directly based on the use of the SRTM digital elevation model and the TopDensT rock-density-structure one as well as due to the data from the ready-made global topograpvimetric model SRTM2Gravity. Operating the information from the SRTM2Gravity model allows you to reduce computation time from several hours to several seconds. It was found out that taking into account topographic masses can significantly reduce the error at creating a map. For the region under consideration, the gravity anomaly interpolating mistake when using topography data decreased from 3,85 to 0,86 mGal. A brief overview of the Earth gravitational field`s parameters reducing methods is given
The research was supported by the Russian Science Foundation grant No. 23-67-10007
References: 
1.   Antonov S. A., Peregudov S. V. Sravnenie tsifrovykh modelei rel'efa. Nauka. Innovatsii. Tekhnologii, 2023, no. 3, pp. 65–86. DOI: 10.37493/2308-4758.2023.3.4.
2.   Denisenko O. V., Pustovoit V. I., Sil'vestrov I. S., Fateev V. F. Problemy razvitiya besshovnoi assistiruyushchei tekhnologii navigatsii v GNSS GLONASS na osnove izmerenii parametrov geofizicheskikh polei. Al'manakh sovremennoi metrologii, 2020, no. 4 (24), pp. 127–160.
3.   Neiman Yu. M., Sugaipova L. S. Approksimatsiya i prodolzhenie vniz aerogravimetricheskikh dannykh s pomoshch'yu sfericheskikh radial'nykh bazisnykh funktsii. Izvestia vuzov. Geodesy and Aerophotosurveying, 2022, Vol. 66, no. 4, pp. 6–22.
4.   Sazonova T. V. Eksperimental'nye issledovaniya tochnostnykh kharakteristik korrelyatsionno-ekstremal'nykh navigatsionnykh sistem po magnitnomu polyu Zemli. Al'manakh sovremennoi metrologii, 2020, no. 4 (24), pp. 86–96.
5.   Canciani A., Raquet J. (2017) Airborne Magnetic Anomaly Navigation. IEEE Transactions on Aerospace and Electronic Systems, no. 53 (1), pp. 67–80. DOI: 10.1109/TAES.2017.2649238.
6.   Hirt C., Flury J. (2008) Astronomical-topographic levelling using high-precision astrogeodetic vertical deflections and digital terrain model data. Journal of Geodesy, no. 82, pp. 231–248. DOI: 10.1007/s00190-007-0173-x.
7.   Hirt C., Yang M., Kuhn M., Bucha B., Kurzmann A., Pail R. (2019) SRTM2gravity: an ultra-high resolution global model of gravimetric terrain corrections. Geophysical Research Letters, no. 46 (9), pp. 4618–4627. DOI: 10.1029/2019GL082521.
8.   Mader K. (1951) Das Newtonsche Raumpotential prismatischer Körper und seine Ableitungen bis zur dritten Ordnung. Volume 11. Verein für Vermessungswesen, Wien, Austria,
9.   Meng Y., Hirt C., Pail R. (2020) TGF: A New MATLAB-based Software for Terrain-related Gravity Field Calculations. Remote Sensing, no. 12 (7), DOI: 10.3390/rs12071063.
10.   Pasteka R., Kušnirák D., Karcol R. (2018) Matlab tool REGCONT2: Effective source depth estimation by means of Tikhonov`s regularized downwards continuation of potential fields. Contributions to Geophysics and Geodesy, no. 48 (3), pp. 231–254. DOI: 10.2478/congeo-2018-0010.
Citation:
Murzabekov M.M., 
Lopatin V.P., 
Bobrov D.S., 
Popadyev V.V., 
(2024) Method of creating navigational-gravimetric maps. Geodesy and cartography = Geodezia i Kartografia, 85(12), pp. 2-8. (In Russian). DOI: 10.22389/0016-7126-2024-1014-12-2-8