UDC: 
DOI: 
10.22389/0016-7126-2024-1014-12-30-34
1 Kanushin V.F.
2 Goldobin D.N.
3 Kobeleva N.N.
4 Inzhevatov I.A.
Year: 
№: 
1014
Pages: 
30-34

Siberian State University of Geosystems and Technologies

1, 
2, 
3, 
4, 
Abstract:
In the work the possibility of harmonic continuation (along the radius-vector) of anomalous potential values and its derivative from the Earth`s surface to satellite altitudes is investigated. It was performed by means of the Poisson integral, which allows solving the classical outer boundary Dirichlet problem for harmonic functions on the sphere in the form of Fourier series on spherical ones. The set of normalised harmonic coefficients of the global high-degree geopotential model EIGEN-6C4 of bounded one n = 2190 is used to compute the globular functions. The results of net anomalies of gravity force to outer space calculated at sea level and at the altitude of 500 kilometres in the form of cartograms and graphs are presented. The studies show that at distance from the Earth`s surface the characteristics of the anomalous gravity field differ in magnitude along a complex curve, and the images on the map seem to blur. Moreover, with reaching altitude up to 500 kilometres, the anomalies decreased compared to those of gravity calculated at the sea level, almost 6-7 times
The exploration was made within the framework of RF research developments “GEOTECH-KVANT-2” for the purpose of creating the Earth’s geo-potential field high-precision models and its characteristics
References: 
1.   Gofman-Vellengof B., Morits G. Fizicheskaya geodeziya. Per. s angl. pod red. Yu. M. Neimana. Moskva: Izd-vo MIIGAiK, 2007, 426 p.
2.   Idel’son N. I. The theory of potential with applications to theory of figure of the Earth and geophysics. Moscow–Leningrad: Ob”edinennoe nauchno-tekhnicheskoe izdatel’stvo, 1936, 424 p.
3.   Kanushin V. F., Karpik A. P., Ganagina I. G., Goldobin D. N., Kosareva A. M., Kosarev N. S. Issledovanie sovremennykh global'nykh modelei gravitatsionnogo polya Zemli. Novosibirsk: SGUGiT, 2015, 270 p.
4.   Bjerhammar A. (1975) Discrete approaches to the solution of the boundary value problem in physical geodesy. Bollettino di Geodesia et Scienze Affini, no. 2 (34), pp. 185–240.
5.   Reigber Ch., Balmino G., Schwintzer P., Biancale R., Bode A., Lemoine J.-M., König R., Loyer S., Neumayer H., Marty J.-Ch., Barthelmes F., Perosanz F., Zhu S.-Y. (2002) A high-quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN-1S). Geophysical Research Letters, no. 29 (14), pp. 37-1-37-4. DOI: 10.1029/2002GL015064.
6.   Rummel R., Balmino G., Johannessen J., Visser P., Woodworth P. (2002) Dedicated gravity field missions-principles and aims. Journal of Geodynamics, no. 33 (1-2), pp. 3–20.
Citation:
Kanushin V.F., 
Goldobin D.N., 
Kobeleva N.N., 
Inzhevatov I.A., 
(2024) Studying gravity changes' anomaly with those of height in the Earth's external gravitational field. Geodesy and cartography = Geodezia i Kartografia, 85(12), pp. 30-34. (In Russian). DOI: 10.22389/0016-7126-2024-1014-12-30-34