UDC: 
DOI: 
10.22389/0016-7126-2024-1004-2-2-11
1 Vystrchil M.G.
2 Baltyzhakova T.I.
3 Romanchikov A.Yu.
4 Bogolyubova A.A.
Year: 
№: 
1004
Pages: 
2-11

Empress Catherine II Saint Petersburg Mining University

1, 
2, 
3, 
4, 
Abstract:
The authors propose a new algorithm for classifying point clouds. It enables them to be separated according to the surface to which they belong. We present a brief analysis of existing methods for solving the problem considered, classifying them and indicating their advantages and disadvantages. The offered algorithm is based on iterative searching for points with a significant difference in height from the digital elevation model that approximates their cloud. In the course of processing, the formulated technique achieves a consistent adjustment of the approximating surface to the actual relief, which helps natural object detection on the ground. The results are demonstrated compared with the classification of point clouds by the CSF algorithm implemented in the widely used corresponding software. The juxtaposition of the obtained results shows that the proposed algorithm allows achieving a better classification quality in areas with irregular terrain, preserving also a greater number of points under the forested areas of the surface
References: 
1.   Buzmakov S. A., Sannikov P. Yu., Kuchin L. S., Igosheva E. A., Abdulmanova I. F. Primenenie bespilotnoi aerofotos"emki dlya diagnostiki tekhnogennoi transformatsii prirodnoi sredy pri ekspluatatsii neftyanogo mestorozhdeniya. Zapiski Gornogo instituta, 2023, Vol. 260, no. 2, pp. 180–193. DOI: 10.31897/PMI.2023.22.
2.   Valkov V.A., Vinogradov K.P., Valkova E.O., Mustafin M.G. (2022) Creating highly informative rasters based on laser scanning and aerial photography data. Geodezia i Kartografia, 83(11), pp. 40-49. (In Russian). DOI: 10.22389/0016-7126-2022-989-11-40-49.
3.   Ilyukhin D. A., Marinin M. A., Rakhmanov R. A. Issledovanie parametrov razvala vzorvannoi gornoi massy fotogrammetricheskim metodom s"emki. Gornyi zhurnal, 2023, no. 9, pp. 12–21. DOI: 10.17580/gzh.2023.09.02.
4.   Kovyazin V.F., Pasko O.A., Lepikhina O.Y., Trushnikov V.E. (2022) Assessment of the forest land inventory accuracy using aerial laser scanning. Geodezia i Kartografia, 83(6), pp. 54-63. (In Russian). DOI: 10.22389/0016-7126-2022-984-6-54-63.
5.   Kremcheev E. A., Danilov A. S., Smirnov Yu. D. Sostoyanie metrologicheskogo obespecheniya sistem monitoringa na baze bespilotnykh vozdushnykh sudov. Zapiski Gornogo in-ta, 2019, Vol. 235, pp. 96–105. DOI: 10.31897/PMI.2019.1.96.
6.   Medvedev V. I., Raikova L. S. Programmy dlya obrabotki dannykh lazernogo skanirovaniya mestnosti. SAPR i GIS avtomobil'nykh dorog, 2017, no. 2 (9), pp. 10–31. DOI: 10.17273/CADGIS.2017.2.2.
7.   Men'shikov S. N., Dzhalyabov A. A., Vasil'ev G. G., Leonovich I. A., Ermilov O. M. Prostranstvennye modeli, razrabatyvaemye s primeneniem lazernogo skanirovaniya na gazokondensatnykh mestorozhdeniyakh severnoi stroitel'no-klimaticheskoi zony. Zapiski Gornogo instituta, 2019, Vol. 238, pp. 430–437. DOI: 10.31897/PMI.2019.4.430.
8.   Osipov A.G., Dmitriev V.V., Kovyazin V.F. (2021) Methods of assessing and mapping the natural and agricultural potential of landscapes. Geodezia i Kartografia, 82(9), pp. 11-20. (In Russian). DOI: 10.22389/0016-7126-2021-975-9-11-20.
9.   Choker H.M., Mustafin M.G. (2021) Geodesic support of laser scan technology use for fixing cultural heritage objects. Geodezia i Kartografia, 82(2), pp. 2-10. (In Russian). DOI: 10.22389/0016-7126-2021-968-2-2-10.
10.   Chen J., Chen Y., Liu Z. (2021) Classification of typical tree species in laser point cloud based on deep learning. Remote Sensing, no. 13 (23), pp. 1–21. DOI: 10.3390/rs13234750.
11.   Kellner M., Stahl B., Reiterer A. (2022) Fused Projection-Based Point Cloud Segmentation. Sensors, no. 22 (3): 1139, DOI: 10.3390/s22031139.
12.   Kobler A., Pfeifer N., Ogrinc P., Todorovski L., Oštir K., Džeroski S. (2007) Repetitive interpolation: A robust algorithm for DTM generation from Aerial Laser Scanner Data in forested terrain. Remote Sensing of Environment, no. 108 (1), pp. 9–23. DOI: 10.1016/j.rse.2006.10.013.
13.   Krisanski S., Taskhiri M. S., Gonzalez S., Herries`s D., Muneri A., Gurung`s M. B., Montgomery`s J., Turner P. (2021) Forest structural complexity tool – an open source, fully-automated tool for measuring forest point clouds. Remote Sensing, no. 13 (22), pp. 1–31. DOI: 10.3390/rs13224677.
14.   Li S., Dai L., Wang H., Wang Y., He Z., Lin S. (2017) Estimating Leaf Area Density of Individual Trees Using the Point Cloud Segmentation of Terrestrial LiDAR Data and a Voxel-Based Model. Remote Sensing, no. 9 (11): 1202, DOI: 10.3390/rs9111202.
15.   Pingel T. J., Clarke K., McBride W. A. (2013) An improved simple morphological filter for the terrain classification of airborne LIDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, no. 77, pp. 21–30. DOI: 10.1016/j.isprsjprs.2012.12.002.
16.   Sharma M., Garg R. D., Badenko V., Fedotov A., Min L., Yao A. (2020) Potential of airborne LiDAR data for terrain parameters extraction. Quaternary International, no. 575-576, pp. 317–327. DOI: 10.1016/j.quaint.2020.07.039.
17.   Zhang W., Qi J., Wan P., Wang H., Xie D., Wang X., Yan G. (2016) An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sensing, no. 8 (6): 501, DOI: 10.3390/rs8060501.
Citation:
Vystrchil M.G., 
Baltyzhakova T.I., 
Romanchikov A.Yu., 
Bogolyubova A.A., 
(2024) Algorithm of land surface points extraction from airborne laser scanning data. Geodesy and cartography = Geodezia i Kartografia, 85(2), pp. 2-11. (In Russian). DOI: 10.22389/0016-7126-2024-1004-2-2-11