UDC: 
DOI: 
10.22389/0016-7126-2024-1007-5-24-36
1 Mukhametshin A.R.
2 Samsonov T.E.
3 Lurie I.K.
Year: 
№: 
1007
Pages: 
24-36

Lomonosov Moscow State University (MSU)

1, 
2, 
3, 
Abstract:
This paper presents the process of creating a model for automated georeferencing of geo- images using image matching technology, an increasingly popular computer vision concept that has not received proper attention in cartography to date. LoFTR (Local Feature Matching with Transformers), a new approach to find and match key points in pairs of images was used as a basis for the developed model. At the first stage, a model architecture and successive stages of input data processing were defined. At the second stage, the model was implemented as a program in accordance with the previously outlined steps. At the third stage, the resulting model was tested on several pairs of geoimages to further evaluate its effectiveness and applicability in various scientific tasks. Results show that the developed model provides a universal algorithm for automated georeferencing of geo-images, demonstrating high-quality results
References: 
1.   Altajskij kraj. Atlas. St. red. V. N. Beloglazova. Moskva; Barnaul: GUGK, 1978, 2 Vol. 1, 222 p.
2.   Atlas Vologodskoi oblasti. Red. kol.: Kalesnik S. V. i dr. Moskva: GUGK, 1965, 53 p.
3.   Atlas Irkutskoj oblasti. Pred. redkol. A. V. Gritsenko, zam. pred. redkol. i otv. red. I. P. Zarutskaya. Moskva – Irkutsk: GUGK, 1962, 182 p.
4.   Atlas Murmanskoi oblasti. Red. kol.: Durov A. G. i dr. Moskva: GUGK, 1971, 33 p.
5.   Atlas Tjumenskoj oblasti. Pod red. E. A. Ogorodnova. Moskva; Tjumen': GUGK, 1971, 2 Vol. 1, 181 p.
6.   Berlyant A. M. Graficheskie modeli mira. Sorosovskii obrazovatel'nyi zhurnal, 1999, no. 4, pp. 65–71.
7.   Borodaev V. B., Kontev A. V. Istoricheskii atlas Altaiskogo kraya: kartograficheskie materialy po istorii Verkhnego Priob'ya i Priirtysh'ya (ot antichnosti do nachala XXI veka). – 2-e izd., ispr. i dop. Barnaul: Azbuka, 2007, 215 p.
8.   Savinkov A. Plan stolichnogo goroda Sankt-Peterburga. Sankt-Peterburg, 1830, 1 p.
9.   Burt J. E., White J., Allord G., Then K. M., Zhu A-X. (2020) Automated and semi-automated map georeferencing. Cartography and Geographic Information Science, Volume 47, no. 1, pp. 46–66. DOI: 10.1080/15230406.2019.1604161.
10.   Cléri I., Pierrot-Deseilligny M., Vallet B. (2014) Automatic georeferencing of a heritage of old analog aerial photographs. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, no. II–3, pp. 33–40. DOI: 10.5194/isprsannals-II-3-33-2014.
11.   Heitzler M., Gkonos C., Tsorlini A., Hurni L. (2018) A modular process to improve the georeferencing of the Siegfried map. e-Perimetron, Volume 13, no. 2, pp. 85–100.
12.   Howe N. R., Weinman J., Gouwar J., Shamji A. (2019) Deformable part models for automatically georeferencing historical map images. Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM, Chicago IL USA, pp. 540–543. DOI: 10.1145/3347146.3359367.
13.   Jiang X., Ma J., Xiao G., Shao Z., Guo X. (2021) A review of multimodal image matching: Methods and applications. Information Fusion, no. 73, pp. 22–71. DOI: 10.1016/j.inffus.2021.02.012.
14.   Li Y., Briggs R. (2012) An automated system for image-to-vector georeferencing. Cartography and Geographic Information Science, Volume 39, no. 4, pp. 199–217. DOI: 10.1559/152304063941199.
15.   Luft J. (2020) Automatic georeferencing of historical maps by geocoding. International Workshop on Automatic Vectorisation of Historical Maps. 13 March 2020, ELTE, Budapest, pp. 77–89. DOI: 10.21862/avhm2020.10.
16.   Luft J., Schiewe J. (2021) Automatic content-based georeferencing of historical topographic maps. Transactions in GIS, Volume 25, no. 6, pp. 2888–2906. DOI: 10.1111/tgis.12794.
17.   Sun J., Shen Z., Wang Y., Bao H., Zhou X. (2021) LoFTR: detector-free local feature matching with transformers. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8918–8927. DOI: 10.1109/CVPR46437.2021.00881.
18.   Weinman J. (2013) Toponym recognition in historical maps by gazetteer alignment. 12th International Conference on Document Analysis and Recognition, IEEE, Washington, DC, USA, pp. 1044–1048. DOI: 10.1109/ICDAR.2013.209.
19.   Weinman J. (2017) Geographic and Style Models for Historical Map Alignment and Toponym Recognition. 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), IEEE, Kyoto, pp. 957–964. DOI: 10.1109/ICDAR.2017.160.
20.   Wolter D., Blank D., Henrich A. (2017) Georeferencing river networks using spatial reasoning. Proceedings of the 11th Workshop on Geographic Information Retrieval, ACM, Heidelberg, Germany, pp. 1–2. DOI: 10.1145/3155902.3155907.
21.   Yilmaz I., Gullu M. (2012) Georeferencing of Historical Maps Using Back Propagation Artificial Neural Network. Experimental Techniques, Volume 36, no. 5, pp. 15–19. DOI: 10.1111/j.1747-1567.2010.00694.x.
Citation:
Mukhametshin A.R., 
Samsonov T.E., 
Lurie I.K., 
(2024) Coordinate georeferencing of geoimages using computer vision. Geodesy and cartography = Geodezia i Kartografia, 85(5), pp. 24-36. (In Russian). DOI: 10.22389/0016-7126-2024-1007-5-24-36
Publication History
Received: 09.02.2024
Accepted: 26.04.2024
Published: 20.06.2024

Content

2024 May DOI:
10.22389/0016-7126-2024-1007-5