UDC: 
DOI: 
10.22389/0016-7126-2025-1024-10-12-20
1 Mareev A.V.
2 Gienko E.G.
Year: 
№: 
1024
Pages: 
12-20

Siberian State University of Geosystems and Technologies

1, 
2, 
Abstract:
The authors present the outcome of a simulation experiment on elimination of systematic errors in the state levelling network using potential technology of chronometric levelling. Its results consider two algorithms. In the initial instance, the geopotential numbers of geodetic points, as derived from the chronometric levelling, are incorporated into estimation of the parameters. In the subsequent one, these numbers are regarded as supplementary measurements of the system of linear equations during the optimization of the levelling network. The experiments were conducted on the levelling network of the RF and the Republic of Kazakhstan fundamental points heights catalogue model, class I (2120 points). The modelling program enables manipulating three variables: the quantity of geometric and chronometric levelling stations, the values of modelled errors, and the resolution of the regular grid of the height system’s error model. During the experiment it was indicated that the optimal solution is characterized by the second algorithm, which incorporates chronometric levelling in the form of additional restrictions. We determined that chronometric levelling can be utilised to reduce the accumulated uncertainty of normal height transfer from initial point by three times. Concurrently, the mean error can be mitigated to 1 cm, concomitant with the requisite precision of chronometric measurements. In order to reduce the systematic errors of BSV-77, it is sufficient to make observations at 30 stations using perspective mobile frequency standards with a relative instability of 10^(–18)
The study was carried out within the Scientific Research "GEOTECHQUANT-3" to explore the possibilities of using chronometric leveling technology to eliminate systematic errors in the state leveling network
References: 
1.   Gienko E. G., Ganagina I. G. K voprosu opredeleniya sistemy vysot, realizuemoi metodom khronometricheskogo nivelirovaniya. Vestnik SSUGT, 2024, Vol. 29, no. 5, pp. 13–22. DOI: 10.33764/2411-1759-2024-29-5-13-22.
2.   V.P. Gorobec, G.V. Dem'yanov, A.N. Majorov, G.G. Pobedinskij Sovremennoe sostoyanie i napravleniya razvitiya geodezicheskogo obespecheniya RF. Vysotnoe i gravimetricheskoe obespechenie (okonchanie). Geoprofi, 2014, no. 1, pp. 5–11.
3.   Relyativistskaya geodeziya. Kvantovye niveliry i set' "Kvantovyi futshtok". Teoriya, eksperimenty, maketirovanie. V. F. Fateev, E. A. Rybakov, F. V. Smirnov i drugie. Pod redaktsiei V. F. Fateeva. Mendeleevo: FGUP "VNIIFTRI", 2024, 344 p.
4.   Khodakov P.A., Basmanov A.V. (2019) The state of the Main high-altitude base of the Russian Federation, taking into account the results of geometric leveling completed volumes in 2012–2018. Geodezia i Kartografia, 80(5), pp. 12-22. (In Russian). DOI: 10.22389/0016-7126-2019-947-5-12-22.
5.   Delva P., Denker H., Lion G. (2019) Chronometric geodesy: methods and applications. Relativistic Geodesy, pp. 25–85. DOI: 10.1007/978-3-030-11500-5_2.
6.   Grotti J., Nosske I., Koller S.B. et al. (2024) Long-distance chronometric leveling with a portable optical clock. Physical Review Applied, no. 21 (6), L061001, DOI: 10.1103/PhysRevApplied.21.L061001.
7.   Hoang A. T., Shen Z., Shen W.-B. (2023) Unifying the regional height system using optic-fiber clock network: a simulation test for Southeast Asia. IEEE Access, no. 11, pp. 92996–93003. DOI: 10.1109/ACCESS.2023.3308519.
8.   Sanchez L., Agren J., Huang J. et al. (2021) Strategy for the realisation of the International Height Reference System (IHRS). Journal of Geodesy, Volume 95, no. 33, DOI: 10.1007/s00190-021-01481-0.
9.   Sаnchez L., Wziontek Ќ., Wang Y. M. et al. (2023) Towards an integrated global geodetic reference frame: preface to the special issue on reference systems in physical geodesy. Journal of Geodesy, Volume 97, no. 59, DOI: 10.1007/s00190-023-01758-6.
10.   Shen Z., Shen W., Zhang S. et al. (2023) Unification of a Global Height System at the Centimeter-Level Using Precise Clock Frequency Signal Links. Remote Sensing, no. 15 (12), DOI: 10.3390/rs15123020.
11.   Takamoto M., Tanaka Y., Katori H. (2022) A perspective on the future of transportable optical lattice clocks. Applied Physics Letters, Volume 120, no. 140502, DOI: 10.1063/5.0087894.
12.   Wu H., Müller J., Lämmerzahl C. (2019) Clock networks for height system unification: a simulation study. Geophysical Journal International, Volume 216, no. 3, pp. 1594–1607. DOI: 10.1093/gji/ggy508.
13.   Wu H., Müller J. (2023) Towards an International Height Reference Frame Using Clock Networks. Beyond 100: The Next Century in Geodesy. International Association of Geodesy Symposia, no. 152, Springer, Cham, pp. 3–10. DOI: 10.1007/1345_2020_97.
14.   Xiong C., Liu D., Wu L., Bao L., Zhang P. (2020) Performance evaluation and requirement analysis for chronometric leveling with high-accuracy optical clocks. Remote Sensing, no. 14 (17), 4141, DOI: 10.3390/rs14174141.
15.   Yuan Y., Cui K., Liu D. et al. (2024) Demonstration of chronometric leveling using transportable optical clocks beyond laser coherence limit. Physical Review Applied, no. 21, 044052, DOI: 10.1103/PhysRevApplied.21.044052.
Citation:
Mareev A.V., 
Gienko E.G., 
(2025) Investigation of the chronometric leveling technology use possibility to eliminate systematic errors in the state leveling network. Geodesy and cartography = Geodeziya i Kartografiya, 86(10), pp. 12-20. (In Russian). DOI: 10.22389/0016-7126-2025-1024-10-12-20
Publication History
Received: 20.05.2025
Accepted: 17.09.2025
Published: 20.11.2025

Content

2025 October DOI:
10.22389/0016-7126-2025-1024-10