ISSN 0016-7126 (Print)
ISSN 2587-8492 (Online)
| 1. Gienko E. G., Ganagina I. G. K voprosu opredeleniya sistemy vysot, realizuemoi metodom khronometricheskogo nivelirovaniya. Vestnik SSUGT, 2024, Vol. 29, no. 5, pp. 13–22. DOI: 10.33764/2411-1759-2024-29-5-13-22. |
| 2. V.P. Gorobec, G.V. Dem'yanov, A.N. Majorov, G.G. Pobedinskij Sovremennoe sostoyanie i napravleniya razvitiya geodezicheskogo obespecheniya RF. Vysotnoe i gravimetricheskoe obespechenie (okonchanie). Geoprofi, 2014, no. 1, pp. 5–11. |
| 3. Relyativistskaya geodeziya. Kvantovye niveliry i set' "Kvantovyi futshtok". Teoriya, eksperimenty, maketirovanie. V. F. Fateev, E. A. Rybakov, F. V. Smirnov i drugie. Pod redaktsiei V. F. Fateeva. Mendeleevo: FGUP "VNIIFTRI", 2024, 344 p. |
| 4. Khodakov P.A., Basmanov A.V. (2019) The state of the Main high-altitude base of the Russian Federation, taking into account the results of geometric leveling completed volumes in 2012–2018. Geodezia i Kartografia, 80(5), pp. 12-22. (In Russian). DOI: 10.22389/0016-7126-2019-947-5-12-22. |
| 5. Delva P., Denker H., Lion G. (2019) Chronometric geodesy: methods and applications. Relativistic Geodesy, pp. 25–85. DOI: 10.1007/978-3-030-11500-5_2. |
| 6. Grotti J., Nosske I., Koller S.B. et al. (2024) Long-distance chronometric leveling with a portable optical clock. Physical Review Applied, no. 21 (6), L061001, DOI: 10.1103/PhysRevApplied.21.L061001. |
| 7. Hoang A. T., Shen Z., Shen W.-B. (2023) Unifying the regional height system using optic-fiber clock network: a simulation test for Southeast Asia. IEEE Access, no. 11, pp. 92996–93003. DOI: 10.1109/ACCESS.2023.3308519. |
| 8. Sanchez L., Agren J., Huang J. et al. (2021) Strategy for the realisation of the International Height Reference System (IHRS). Journal of Geodesy, Volume 95, no. 33, DOI: 10.1007/s00190-021-01481-0. |
| 9. Sаnchez L., Wziontek Ќ., Wang Y. M. et al. (2023) Towards an integrated global geodetic reference frame: preface to the special issue on reference systems in physical geodesy. Journal of Geodesy, Volume 97, no. 59, DOI: 10.1007/s00190-023-01758-6. |
| 10. Shen Z., Shen W., Zhang S. et al. (2023) Unification of a Global Height System at the Centimeter-Level Using Precise Clock Frequency Signal Links. Remote Sensing, no. 15 (12), DOI: 10.3390/rs15123020. |
| 11. Takamoto M., Tanaka Y., Katori H. (2022) A perspective on the future of transportable optical lattice clocks. Applied Physics Letters, Volume 120, no. 140502, DOI: 10.1063/5.0087894. |
| 12. Wu H., Müller J., Lämmerzahl C. (2019) Clock networks for height system unification: a simulation study. Geophysical Journal International, Volume 216, no. 3, pp. 1594–1607. DOI: 10.1093/gji/ggy508. |
| 13. Wu H., Müller J. (2023) Towards an International Height Reference Frame Using Clock Networks. Beyond 100: The Next Century in Geodesy. International Association of Geodesy Symposia, no. 152, Springer, Cham, pp. 3–10. DOI: 10.1007/1345_2020_97. |
| 14. Xiong C., Liu D., Wu L., Bao L., Zhang P. (2020) Performance evaluation and requirement analysis for chronometric leveling with high-accuracy optical clocks. Remote Sensing, no. 14 (17), 4141, DOI: 10.3390/rs14174141. |
| 15. Yuan Y., Cui K., Liu D. et al. (2024) Demonstration of chronometric leveling using transportable optical clocks beyond laser coherence limit. Physical Review Applied, no. 21, 044052, DOI: 10.1103/PhysRevApplied.21.044052. |
| (2025) Investigation of the chronometric leveling technology use possibility to eliminate systematic errors in the state leveling network. Geodesy and cartography = Geodeziya i Kartografiya, 86(10), pp. 12-20. (In Russian). DOI: 10.22389/0016-7126-2025-1024-10-12-20 |