UDC: 
DOI: 
10.22389/0016-7126-2025-1025-11-27-32
1 Komissarov A.V.
2 Arbuzov S.A.
3 Dedkova V.V.
Year: 
№: 
1025
Pages: 
27-32

Siberian State University of Geosystems and Technologies

1, 
2, 
3, 
Abstract:
The authors describe the operating principle of SLAM scanners and analyze the existing methods for their metrological verification. The shortcomings of previously proposed algorithms are outlined, and it is shown that the presented characteristics do not provide users with objective data on the accuracy of real objects measurements. We propose a test field consisting of various geometric primitives (sphere, cylinder, plate/plane, cube, etc.) and special markers, with its dimensions designed to enable studying SLAM scanners across the entire range of measurable distances. Special markers are designed for investigating the accuracy of external orientation of scanning data and developing recommendations on the optimal geometry of marker placement and the distance between them. As a geodetic basis for creating such polygons, it is proposed to use field geodetic comparators, the accuracy of which meets the three-sigma rule for SLAM scanner investigations
References: 
1.   Antipov I. T. Matematicheskie osnovy prostranstvennoi analiticheskoi fototriangulyatsii. Moskva: Kartgeotsentr – Geodezizdat, 2003, 296 p.
2.   Bol'shakov V. D., Markuze Ju. I., Golubev V. V. Uravnivanie geodezicheskih postroenij: Sprav. posobie. Moskva: Nedra, 1989, 413 p.
3.   Il'in V. A., Poznyak E. G. Analiticheskaya geometriya.7-e izd. ster. Moskva: FIZMATLIT, 2004, 224 p.
4.   Komissarov A. V., Altyntsev M. A. Metod aktivnogo distantsionnogo zondirovaniya: lazernoe skanirovanie. Novosibirsk: SGUGiT, 2020, 254 p.
5.   Markuze Yu. I., Boiko E. G., Golubev V. V. Geodeziya. Vychislenie i uravnivanie geodezicheskikh setei. Moskva: Kartgeotsentr – Geodezizdat, 1994, 431 p.
6.   Mikhailov A. P., Chibunichev A. G. Fotogrammetriya: Ucheb. dlya vuzov. Pod obshch. red. A. G. Chibunicheva. Moskva: MIIGAiK, 2016, 294 p.
7.   Rodzhers D. F., Adams D. A. Matematicheskie osnovy mashinnoi grafiki. Per. s angl. Moskva: Mir, 2001, 604 p.
8.   Shabat B. V. Vvedenie v kompleksnyi analiz. Ch. II, 2-e izd., pererab. i dop. Moskva: Nauka, 1976, 400 p.
9.   Bai H. (2023) ICP algorithm: Theory, practice and its SLAM-oriented taxonomy. Applied and computational engineering, no. 2 (1), pp. 10–21. DOI: 10.54254/2755-2721/2/20220512.
10.   Boehler W., Marbs A. (2002) 3D Scanning Instruments. Proceedings of the CIPA WG 6 International Workshop. pp. 9–12.
11.   Chrbolkova A., Stroner M., Urban R. et al. (2025) A Comparative study of indoor accuracies between SLAM and static scanners. Applied Sciences, no. 15 (14), DOI: 10.3390/app15148053.
12.   Dold C., Brenner C. (2006) Registration of terrestrial laser scanning data using planar patches and image data. ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, no. 36, pp. 78–83.
13.   Han Y., Oh J. (2018) Automated geo/co-registration of multi-temporal very-high-resolution imagery. Sensors, no. 18 (5), DOI: 10.3390/s18051599.
14.   Hullo J.-F., Thibault G., Grussenmeyer P. et al. (2012) Probabilistic feature matching applied to primitive based registration of TLS data. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, no. I-3, pp. 221–226. DOI: 10.5194/isprsannals-I-3-221-2012.
15.   Iavaronea A., Martina E. (2003) Calibration verification facilities for long range laser scanners. Procs. 6th Conference on Optical 3-D Measurement Techniques, Zurich, Switzerland. pp. 268–278.
16.   Karam S., Lehtola V., Vosselman G. (2021) Simple loop closing for continuous 6DOF LIDAR&IMU graph SLAM with planar features for indoor environments. ISPRS Journal of Photogrammetry and Remote Sensing, no. 181, pp. 413–426. DOI: 10.1016/j.isprsjprs.2021.09.020.
17.   Mendes E., Koch P., Lacroix S. (2016) ICP-based pose-graph SLAM. IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Lausanne, Switzerland. pp. 195–200. DOI: 10.1109/SSRR.2016.7784298.
18.   Trybała P., Kasza D., Wajs J., Remondino F. (2023) Comparison of low-cost handheld lidar-based SLAM systems for mapping underground tunnels. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 517–524. DOI: 10.5194/isprs-archives-XLVIII-1-W1-2023-517-2023.
Citation:
Komissarov A.V., 
Arbuzov S.A., 
Dedkova V.V., 
(2025) A methodology for studying the measurement accuracy of SLAM scanners. Geodesy and cartography = Geodeziya i Kartografiya, 86(11), pp. 27-32. (In Russian). DOI: 10.22389/0016-7126-2025-1025-11-27-32