DOI: 
10.22389/0016-7126-2025-1026-12-29-37
1 Kolesnikov A.A.
2 Kosarev N.S.
3 Reznik A.V.
4 Nemova N.A.
Year: 
№: 
1026
Pages: 
29-37

Siberian State University of Geosystems and Technologies

1, 
2, 

Institute of Mining, Siberian Branch, Russian Academy of Sciences

3, 
4, 
Abstract:
This article deals with a calling issue of sustainable development in regions with mining industries. The authors developed an algorithm and presented the architecture of a software system for automated remote monitoring of man-made land problems. It is based on comprehensive application of modern machine training methods, specifically self-supervised learning (Dino, MAE, MoCo) and the Vision Transformer architecture for the analysis of multispectral satellite imagery from open sources (Sentinel, Landsat). The proposed solution automates the entire data management cycle from gathering and preprocessing to segmentation of objects (quarries, waste heaps), area measurement, and time-series analysis of spectral indices, such as the normalized difference vegetation (NDVI) and the normalized difference water (NDWI) ones, which serve as indicators of vegetation cover and water body condition, respectively. The system is integrated with GIS via a QGIS module, and its functionality is accessible via an API, ensuring easy use and integration into existing workflows. The proposed approach provides increased efficiency and accuracy of monitoring, making a basis for informed management decisions in the area of rational employing natural- and subsoil resources
The research was carried out within the state assignment (project No. 121051900145-1)
References: 
1.   Akinina N. V., Nikiforov M. B. Algoritm detektirovaniya nesanktsionirovannykh svalok musora na osnove analiza dannykh distantsionnogo zondirovaniya Zemli. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2019, no. 10, pp. 321–329.
2.   Gavrilov V.L., Nemova N. A., Reznik A. V., Kosarev N. S., Kolesnikov A. A. O neobkhodimosti kompleksnoi geoekologicheskoi otsenki tekhnogenno narushennykh gornymi rabotami zemel'. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov, 2023, Vol. 334, no. 10, pp. 76–87. DOI: 10.18799/24131830/2023/10/4212.
3.   Zen'kov I. V., Anishchenko Yu. A., Fedorov V. A. Informatsionnoe obespechenie otsenki ekologii narushennykh zemel' zhelezorudnymi kar'erami na Srednem i Yuzhnom Urale. Ekologiya i promyshlennost' Rossii, 2021, Vol. 25, no. 1, pp. 38–43. DOI: 10.18412/1816-0395-2021-1-38-43.
4.   Ivanova Yu. N., Bochneva A. A. Prognozirovanie perspektivnykh ploshchadei na zolotorudnyi tip mineralizatsii s primeneniem metodov matematicheskoi obrabotki informatsii i nabora dannykh KA DZZ Harmonized Landsat Sentinel-2 na territorii Polyarnogo Urala. Issledovanie Zemli iz kosmosa, 2024, no. 2, pp. 32–53. DOI: 10.31857/S0205961424020043.
5.   Kolesnikov A. A., Kosarev N. S., Nemova N. A., Reznik A. V., Platonov T. A. Sozdanie bazy dannykh tekhnogenno-narushennykh territorii Novosibirskoi oblasti. Vestnik SSUGT, 2023, Vol. 25, no. 5, pp. 80–92. DOI: 10.33764/2411-1759-2023-28-5-80-92.
6.   Kolesnikov A.A., Kosarev N.S., Reznik A.V., Nemova N.A., Astapov A.M., Kropacheva M.K. (2024) Automation of determining the contours of technogenically disturbed territories with open satellite imagery data. Geodezia i Kartografia, 85(11), pp. 25-34. (In Russian). DOI: 10.22389/0016-7126-2024-1013-11-25-34.
7.   Khavanskaya N. M., Novochadova A. V. Analiz vosstanovleniya rastitel'nogo pokrova v predelakh Shurupovskikh kar'erov na osnove dannykh distantsionnogo zondirovaniya. Prirodnye sistemy i resursy, 2023, Vol. 13, no. 2, pp. 58–66. DOI: 10.15688/nsr.jvolsu.2023.2.6.
8.   Du S., Li W., Li J., Du S., Zhang C., Sun Y. (2022) Open-pit mine change detection from high resolution remote sensing images using DA-UNet++ and object-based approach. International Journal of Mining, Reclamation and Environment, no. 36 (7), pp. 512–535. DOI: 10.1080/17480930.2022.2072102.
9.   Frantz D., Hass E., Uhl A., Stoffels J., Hill J. (2018) Improvement of the Fmask algorithm for Sentinel-2 images: Separating clouds from bright surfaces based on parallax effects. Remote Sensing of Environment, no. 215, pp. 471–481. DOI: 10.1016/j.rse.2018.04.046.
10.   Kim J.-Y., Tangriberganov G., Jung W., Kim D. S., Koo H. S., Lee S. (2023) An effective representation learning approach: the integrated self-supervised pre-training models of StyleGAN2-ADA and DINO for colon polyp images. IEEE Access, no. 11, pp. 143628–143634. DOI: 10.1109/ACCESS.2023.3342838.
11.   Meng X., Zhang D., Dong S., Yao Ch. (2024) Оpen-pit granite mining area extraction using UAV aerial images and the novel GIPNet. Remote Sensing, no. 16 (5), DOI: 10.3390/rs16050789.
12.   Murdaca G., Ricciuti F., Rucci A., Le Saux B., Fumagalli A., Prati C. (2023) A semi-supervised deep learning framework for change detection in open-pit mines using SAR imagery. Remote Sensing, no. 15 (24), DOI: 10.3390/rs15245664.
13.   Padrо J.-C., Carabassa V., Balaguе J., Brotons L., Alcaniz J. M., Pons X. (2019) Monitoring opencast mine restorations using Unmanned Aerial System (UAS) imagery. Science of The Total Environment, no. 657, pp. 1602–1614. DOI: 10.1016/j.scitotenv.2018.12.156.13.
14.   Qian L., Liu X., Huang M., Xiang X. (2022) Self-supervised pre-training with Bridge neural network for SAR-optical matching. Remote Sensing, no. 14, DOI: 10.3390/rs14122749.
15.   Rossi L., Bernuzzi V., Fontanini T., Bertozzi M., Prati A. (2025) Swin2-MoSE: A new single image supersolution model for remote sensing. IET Image Processing, no. 19 (1), e13303, DOI: 10.1049/ipr2.13303.
16.   Wang Y., Bashir S. M. A., Khan M., Ullah Q., Wang R., Song Y., Guo Zh., Niu Y. (2022) Remote sensing image super-resolution and object detection: Benchmark and state of the art. Expert Systems with Applications, Volume 197, no. 116793, DOI: 10.1016/j.eswa.2022.116793.
17.   Wang L., Li F., Wang W., Liu C. (2023) Application research of comprehensive geophysical prospecting in a typical slope of abandoned open-pit in Beijing, China. Exploration Geophysics, no. 55 (2), pp. 153–165. DOI: 10.1080/08123985.2023.2265403.
18.   Wu J., Cong R., Fang L., Guo C., Zhang B., Ghamisi P. (2022) Unpaired remote sensing image super-resolution with content-preserving weak supervision neural network. Science China Information Sciences, Volume 66, no. 119105, DOI: 10.1007/s11432-021-3575-1.
19.   Yang W., Tian W., Ming L. (2021) Vegetation classification by Multi-scale hierarchical segmentation on GF-2 remote sensing image. International Journal of Robotics and Automation, no. 36 (10), DOI: 10.2316/j.2021.206-0617.
20.   Yulianto F., Sofan P., Nugroho G., Suwarsono S. (2022) Artificial intelligence remote sensing for open-pit mining detection in the tropical environment of Indonesia. Journal of Positive School Psychology, no. 6 (3), pp. 8922–8929.
21.   Zhao F., Bao N., Ye B., Wang S., Liu X., Gao J. (2016) Automatic change detection from remote sensing stereo image for large surface coal mining area. Frontiers in Environmental Engineering, no. 5, pp. 20–24.
22.   Zhang H., Liu W., Shi J., Chang Sh., Wang H., He J., Huang Q. (2023) MaeFE: Masked Autoencoders Family of Electrocardiogram for Self-Supervised Pretraining and Transfer Learning. IEEE Transactions on Instrumentation and Measurement, Volume 72, no. 2502015, DOI: 10.1109/TIM.2022.3228267.
Citation:
Kolesnikov A.A., 
Kosarev N.S., 
Reznik A.V., 
Nemova N.A., 
(2025) Automated remote monitoring of technogenically disturbed areas through machine training methods. Geodesy and cartography = Geodeziya i Kartografiya, 86(12), pp. 29-37. (In Russian). DOI: 10.22389/0016-7126-2025-1026-12-29-37