DOI: 
10.22389/0016-7126-2025-1026-12-38-45
1 Kamaev A.A.
2 Manevich A.I.
3 Tatarinov V.N.
4 Odintsova A.A.
Year: 
№: 
1026
Pages: 
38-45

RAS Geophysical Center

1, 
2, 
3, 
4, 
Abstract:
The authors present the results of satellite images texture analysis for geological mapping in the Arctic Zone of the Russian Federation, where field surveys are complicated by challenging logistics and harsh climate conditions. We examined approaches to interpretation of satellite data based on geological spectral indices and morphometric terrain parameters. Special attention is paid to advanced texture analysis methods, particularly the Gray Level Co-Occurrence Matrix (GLCM), which enabled identifying structural anomalies caused by tectonic disturbances and mineralogical properties. As a case study, the Pavlovskoye lead-and-zinc deposit (Novaya Zemlya isles, RF) was analyzed using Sentinel-2 data. Seven GLCM features were calculated, their spatial distribution was examined, and principal component analysis was performed, allowing for detection of tectonic structures. The research showed the potential of texture analysis for geological mapping and identifying promising mineralization zones in the remote and hard-to-access regions of the Arctic
This work was funded by the Russian Science Foundation (project No. 21-77-30010-P)
References: 
1.   Arakcheev D. B., Kovtonyuk G. P., Tkacheva E. A., Anisimova A. B., Korobko E. I., Amelina O. I., Mikhailova G. A. Geologicheskaya, geofizicheskaya i geokhimicheskaya izuchennost' Arkticheskoi zony Rossii. Mineral'nye resursy Rossii. Ekonomika i upravlenie, 2019, no. 3, pp. 8–13.
2.   Abdurrahmanova I.D. (2015) The method for adaptive estimate of information content of texture type objects in the satellite images of remote sensing. Geodezia i Kartografia, (9), pp. 43–47. (In Russian). DOI: 10.22389/0016-7126-2015-903-9-43-47.
3.   Bortnikov N. S., Lobanov K. V., Volkov A. V., Galyamov A. L., Vikent'ev I. V., Tarasov N. N., Distler V. V., Lalomov A. V., Aristov V. V., Murashov K. Yu., Chizhova I. A., Chefranov R. M. Mestorozhdeniya strategicheskikh metallov arkticheskoi zony. Geologiya rudnykh mestorozhdenii, 2015, Vol. 57, no. 6, pp. 479–500. DOI: 10.7868/S0016777015060027.
4.   Bragina E.V. (2021) Methodological approach to creating a catalog of test objects for evaluating the space survey materials quality. Geodezia i Kartografia, 82(10), pp. 33-41. (In Russian). DOI: 10.22389/0016-7126-2021-976-10-33-41.
5.   Galyamov A. L., Volkov A. V., Lobanov K. V. Poiskovaya model' SEDEX-MVT mestorozhdenii arkticheskoi zony. Arktika: ekologiya i ekonomika, 2016, no. 1 (21), pp. 46–55.
6.   Kaminskii V. D., Poselov V. A., Gusev E. A., Alekseeva A. K., Smirnov A. N., Leichenkov G. L. Osnovnye rezul'taty geologicheskikh issledovanii v Arktike i Antarktike za poslednee desyatiletie. Polyarnye chteniya–2020. Istoriya nauchnykh issledovanii v Arktike i Antarktike, 2020, pp. 133–143.
7.   Simonov D.P. (2014) Metric approach to decode images on the base statistic standards. Geodezia i Kartografia, (10), pp. 51-56. (In Russian). DOI: 10.22389/0016-7126-2014-892-10-51-56.
8.   Asadzadeh S. M., de Souza Filho C. R. (2016) A review on spectral processing methods for geological remote sensing. International Journal of Applied Earth Observation and Geoinformation, no. 47, pp. 69–90. DOI: 10.1016/j.jag.2015.12.004.
9.   Clark R. N., Swayze G. A., Wise R., Livo K. E., Hoefen T. M., Kokaly R. F., Sutley S. J. (2007) USGS digital spectral library splib06a. U. S. Geological Survey, Data Series, no. 231, DOI: 10.3133/ds231.
10.   Chen T., Yang C., Han L., Guo S. (2023) GF-2 data for lithological classification using texture features and PCA/ICA methods in Jixi, Heilongjiang, China. Remote Sensing, no. 15 (19), DOI: 10.3390/rs15194676.
11.   Liu J., He H., Michalski J., Cuadros J., Yao Y., Tan W., Qin X., Li S., Wei G. (2021) Reflectance spectroscopy applied to clay mineralogy and alteration intensity of a thick basaltic weathering sequence in Hainan Island, South China. Applied Clay Science, Volume 201, no. 105923, DOI: 10.1016/j.clay.2020.105923.
12.   Lu Y., Yang C. (2024) Influence of GLCM texture parameters on lithological mapping using Sentinel-1 imagery. Geocarto International, no. 39 (1), DOI: 10.1080/10106049.2024.2425183.
13.   Petrov V. A., Ustinov S. A., Minaev V. A. (2025) Methodological aspects of predictive mineragenic studies using earth remote sensing data. Russian Journal of Earth Sciences, no. 25, ES3001, DOI: 10.2205/2025es001002.
14.   Riley S. J., DeGloria S. D., Elliot R. (1999) A terrain ruggedness index that quantifies topographic heterogeneity. Intermountain Journal of Sciences, no. 5 (1–4), pp. 23–27.
15.   Singh A., Armstrong R. T. (2019) Rock Characterization using gray-level co-occurrence matrix: an objective perspective of digital rock statistics. Water Resources Research, no. 55 (3), pp. 1912–1927. DOI: 10.1029/2018WR023342.
16.   Stow D. A., Hope A., McGuire D. et al. (2004) Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems. Remote Sensing of Environment, no. 89 (3), pp. 281–308. DOI: 10.1016/j.rse.2003.10.018.
17.   Van der Meer F. D., Van der Werff H. M. A., Van Ruitenbeek F. J. A. et al. (2012) Multi-and hyperspectral geologic remote sensing: A review. International Journal of Applied Earth Observation and Geoinformation, no. 14 (1), pp. 112–128. DOI: 10.1016/j.jag.2011.08.002.
18.   Wu J., Han W., Chen J., Wang S. (2024) Improving geological remote sensing interpretation via optimal transport-based point–surface data fusion. Remote Sensing, no. 16 (1), DOI: 10.3390/rs16010053.
19.   Xi J., Jiang Q., Liu H., Gao X. (2023) Lithological mapping research based on feature selection model of ReliefF-RF. Applied Sciences, no. 13 (20), DOI: 10.3390/app132011225.
20.   Zevenbergen L. W., Thorne C. R. (1987) Quantitative analysis of land surface topography. Earth Surface Processes and Landforms, no. 12 (1), pp. 47–56. DOI: 10.1002/esp.3290120107.
Citation:
Kamaev A.A., 
Manevich A.I., 
Tatarinov V.N., 
Odintsova A.A., 
(2025) Geological mapping based on texture analysis of gray level co-occurrence matrices from satellite images. Geodesy and cartography = Geodeziya i Kartografiya, 86(12), pp. 38-45. (In Russian). DOI: 10.22389/0016-7126-2025-1026-12-38-45