DOI: 
10.22389/0016-7126-2025-1015-1-10-20
1 Karpik A.P.
2 Tolstikov A.S.
3 Golovin N.N.
4 Tomilov A.S.
5 Krivetsky A.V.
6 Savinov K.N.
7 Rachkov V.D.
8 Boldyrev V.S.
9 Dmitriev A.K.
Year: 
№: 
1015
Pages: 
10-20

Siberian State University of Geosystems and Technologies

1, 

West Siberian Branch of Russian metrological institute of technical physics and radioengineering

2, 
4, 
7, 

Novosibirsk State Technical University

3, 
5, 
6, 
8, 
9, 
Abstract:
Measurements of the gravitational frequency shift of a hydrogen clock were carried out when it was moved between two points located at different orthometric heights when transmitting the signal simultaneously via radio cable and optical fiber. Based on the obtained values of the average relative difference frequency, that of orthometric heights was calculated depending on the positions of the transported quantum clocks, the average value of which is 43,08 m. The maximum error based on the outcome of four height determinations is 2,58 m and it is 6,3 % of the actual value of 41,26 m. From the analysis of the obtained results, it follows that the main factor affecting the accuracy of altitude definition by the chronometric leveling method is the systematic change in the frequency of the transported quantum clocks. The main contribution to the error budget is made by the RMSD of the transported quantum clocks, which is 1,73 ⸱ 10^(–15)
The research was carried out as part of the R&D project "GEOTECH-Quantum". The fiber-optic transmission system with phase stabilization of the transmitted signal was developed within the framework of Project No. FSUN-2023-0007
References: 
1.   Alekseitsev S. A., Gusar D. F., Rachkov V. D., Tolstikov A. S., Shmidt L. V. Otsenivanie gravitatsionnykh izmenenii chastoty v zadachakh khronometricheskogo nivelirovaniya na osnove primeneniya sputnikovykh navigatsionnykh tekhnologii. SibOptika-2022. Aktual'nye voprosy vysokotekhnologichnykh otraslei, 2022, Vol. 8, no. 2, pp. 107–112. DOI: 10.33764/2618-981X-2022-8-2-107-112.
2.   Fateev V. F. Relyativistskaya teoriya i primenenie kvantovogo nivelira i seti «Kvantovyi futshtok». Al'manakh sovremennoi metrologii, 2020, no. 3, pp. 11–52.
3.   Fateev V. F., Rybakov E. A. Eksperimental'naya proverka kvantovogo nivelira na mobil'nykh kvantovykh chasakh. Doklady Akademii nauk. Fizika, tekhnicheskie nauki, 2021, Vol. 496, pp. 41–44.
4.   Ashby N. (2003) Relativity in the Global Positioning System. Living Reviews in Relativity, no. 6, pp. 1–42. URL: http://www.livingreviews.org/lrr-2003-1 (accessed: 21.09.2022). DOI: 10.12942/lrr-2003-1.
5.   Calonico D., Bertacco E. K., Calosso C. E., et al. (2014) High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link. Applied Physics B, no. 117, pp. 979–986. DOI: 10.1007/s00340-014-5917-8.
6.   Grotti1 J., Koller S., Vogt S. et al. (2018) Geodesy and metrology with a transportable optical clock. Nature Physics, no. 14, pp. 437–441. DOI: 10.1038/s41567-017-0042-3.
7.   Lisdat C., Grosche G., Quintin N., et al. (2016) A clock network for geodesy and fundamental science. Nature Communications, Volume 7, no. 12443, DOI: 10.1038/ncomms12443.
8.   Liu D., Wu L., Xiong Ch., Bao L. (2024) Geopotential Difference Measurement Using Two Transportable Optical Clocks' Frequency Comparisons. Remote Sensing, no. 16 (13), DOI: 10.3390/rs16132462.
9.   Pound R. V., Rebka Jr. G. A. (1960) Apparent weight of photons. Physical Review Letters, Volume 4, no. 7, pp. 337. DOI: 10.1103/PhysRevLett.4.337.
10.   Pound R. V., Rebka Jr. G. A. (1959) Gravitational Red-Shift in Nuclear Resonance. Physical Review Letters, Volume 3, no. 439, DOI: 10.1103/PhysRevLett.3.439.
11.   Pound R. V., Snider J. L. (1964) Effect of Gravity on Nuclear Resonance. Physical Review Letters, Volume 13, no. 539, DOI: 10.1103/PhysRevLett.13.539.
12.   Takamoto M., Ushijima I., Ohmae N. et al. (2020) Test of general relativity by a pair of transportable optical lattice clocks. Nature Photonics, no. 14, pp. 411–415. DOI: 10.1038/s41566-020-0619-8.
13.   Takano T., Takamoto M., Ushijima I., Ohmae N., Akatsuka T., Yamaguchi A., Kuroishi Y., Munekane H., Miyahara B., Katori H. (2016) Geopotential measurements with synchronously linked optical lattice clocks. Nature Photonics, no. 10, pp. 662–666. DOI: 10.1038/nphoton.2016.159.
14.   Takano T., Takamoto M., Ushijima I., Ohmae N., Akatsuka T., Yamaguchi A., Kuroishi Y., Munekane H., Miyahara B., Katori H. (2016) Real-time geopotentiometry with synchronously linked optical lattice clocks. Nature Photonics, DOI: 10.48550/arXiv.1608.07650.
15.   Ye J., Peng J.-L., Jones R. J., et al. (2003) Delivery of high-stability optical and microwave frequency standards over an optical fiber network. Journal of the Optical Society of America B, Volume 20, no. 7, pp. 1459–1467. DOI: 10.1364/JOSAB.20.001459.
Citation:
Karpik A.P., 
Tolstikov A.S., 
Golovin N.N., 
Tomilov A.S., 
Krivetsky A.V., 
Savinov K.N., 
Rachkov V.D., 
Boldyrev V.S., 
Dmitriev A.K., 
(2025) Measurements by the method of chronometric leveling through a fiber-optic communication line. Geodesy and cartography = Geodezia i Kartografia, 86(1), pp. 10-20. (In Russian). DOI: 10.22389/0016-7126-2025-1015-1-10-20
Publication History
Received: 02.12.2024
Accepted: 27.01.2025
Published: 20.02.2025

Authors:

Content

2025 January DOI:
10.22389/0016-7126-2025-1015-1