ISSN 0016-7126 (Print)
ISSN 2587-8492 (Online)
1. Alekseitsev S. A., Gusar D. F., Rachkov V. D., Tolstikov A. S., Shmidt L. V. Otsenivanie gravitatsionnykh izmenenii chastoty v zadachakh khronometricheskogo nivelirovaniya na osnove primeneniya sputnikovykh navigatsionnykh tekhnologii. SibOptika-2022. Aktual'nye voprosy vysokotekhnologichnykh otraslei, 2022, Vol. 8, no. 2, pp. 107–112. DOI: 10.33764/2618-981X-2022-8-2-107-112. |
2. Fateev V. F. Relyativistskaya teoriya i primenenie kvantovogo nivelira i seti «Kvantovyi futshtok». Al'manakh sovremennoi metrologii, 2020, no. 3, pp. 11–52. |
3. Fateev V. F., Rybakov E. A. Eksperimental'naya proverka kvantovogo nivelira na mobil'nykh kvantovykh chasakh. Doklady Akademii nauk. Fizika, tekhnicheskie nauki, 2021, Vol. 496, pp. 41–44. |
4. Ashby N. (2003) Relativity in the Global Positioning System. Living Reviews in Relativity, no. 6, pp. 1–42. URL: http://www.livingreviews.org/lrr-2003-1 (accessed: 21.09.2022). DOI: 10.12942/lrr-2003-1. |
5. Calonico D., Bertacco E. K., Calosso C. E., et al. (2014) High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link. Applied Physics B, no. 117, pp. 979–986. DOI: 10.1007/s00340-014-5917-8. |
6. Grotti1 J., Koller S., Vogt S. et al. (2018) Geodesy and metrology with a transportable optical clock. Nature Physics, no. 14, pp. 437–441. DOI: 10.1038/s41567-017-0042-3. |
7. Lisdat C., Grosche G., Quintin N., et al. (2016) A clock network for geodesy and fundamental science. Nature Communications, Volume 7, no. 12443, DOI: 10.1038/ncomms12443. |
8. Liu D., Wu L., Xiong Ch., Bao L. (2024) Geopotential Difference Measurement Using Two Transportable Optical Clocks' Frequency Comparisons. Remote Sensing, no. 16 (13), DOI: 10.3390/rs16132462. |
9. Pound R. V., Rebka Jr. G. A. (1960) Apparent weight of photons. Physical Review Letters, Volume 4, no. 7, pp. 337. DOI: 10.1103/PhysRevLett.4.337. |
10. Pound R. V., Rebka Jr. G. A. (1959) Gravitational Red-Shift in Nuclear Resonance. Physical Review Letters, Volume 3, no. 439, DOI: 10.1103/PhysRevLett.3.439. |
11. Pound R. V., Snider J. L. (1964) Effect of Gravity on Nuclear Resonance. Physical Review Letters, Volume 13, no. 539, DOI: 10.1103/PhysRevLett.13.539. |
12. Takamoto M., Ushijima I., Ohmae N. et al. (2020) Test of general relativity by a pair of transportable optical lattice clocks. Nature Photonics, no. 14, pp. 411–415. DOI: 10.1038/s41566-020-0619-8. |
13. Takano T., Takamoto M., Ushijima I., Ohmae N., Akatsuka T., Yamaguchi A., Kuroishi Y., Munekane H., Miyahara B., Katori H. (2016) Geopotential measurements with synchronously linked optical lattice clocks. Nature Photonics, no. 10, pp. 662–666. DOI: 10.1038/nphoton.2016.159. |
14. Takano T., Takamoto M., Ushijima I., Ohmae N., Akatsuka T., Yamaguchi A., Kuroishi Y., Munekane H., Miyahara B., Katori H. (2016) Real-time geopotentiometry with synchronously linked optical lattice clocks. Nature Photonics, DOI: 10.48550/arXiv.1608.07650. |
15. Ye J., Peng J.-L., Jones R. J., et al. (2003) Delivery of high-stability optical and microwave frequency standards over an optical fiber network. Journal of the Optical Society of America B, Volume 20, no. 7, pp. 1459–1467. DOI: 10.1364/JOSAB.20.001459. |
(2025) Measurements by the method of chronometric leveling through a fiber-optic communication line. Geodesy and cartography = Geodezia i Kartografia, 86(1), pp. 10-20. (In Russian). DOI: 10.22389/0016-7126-2025-1015-1-10-20 |