DOI: 
10.22389/0016-7126-2025-1019-5-28-38
1 Sizov O.S.
Year: 
№: 
1019
Pages: 
28-38

Gubkin Russian State University of Oil and Gas

1, 
Abstract:
The author presents the results of mapping the parameters of aeolian micro-relief in the northern part of Western Siberia, RF, due to the interpretation of the ArcticDEM and images from Corona, WorldView-2/3, and GeoEye-1. The mapping methodology is based on using tools for coregistration, segmentation, zonal statistics calculation, and visual interpretation. The study of the largest blowout depressions showed that they are mainly formed at elevations not exceeding 60 m above the Sea Level; usually have flat sandy surfaces, and relatively regular shapes. With significant elevation differences (from 10 to 25 m), the average maximum height of the ridges on the periphery of the blowout depressions is 5,61 m, and that of transverse dunes on the surface is 1,73 m. For most of such relief features, a reduction of the active sands area by an average of 0,1 sq. m has been observed over the past 47–55 years. The average displacement rate of the ridges on their periphery was 0,29 m/year, with a maximum value of 1,09 m. The aeolian micro-relief in the north of Western Siberia is more than twice as small as that of the tukulans in Yakutia (Sakha Republic), RF. The dynamics indicators are generally comparable to those observed for similar landforms in the high-latitude regions of Alaska and Antarctica. The obtained results are representative of a vast area in the said geographical region, and their practical application is related to addressing geo-environmental forecasting, reclamation planning, and indicators of global climate change
References: 
1.   Voskresenskii K. S. Sovremennye rel'efoobrazuyushchie protsessy na ravninakh Severa Rossii. Moskva: Moskovskii gos. un-t, 2001, 262 p.
2.   Galanin A. A., Pavlova M. R. Pozdnechetvertichnye dyunnye obrazovaniya (d"olkuminskaya svita) v Tsentral'noi Yakutii (Chast' 2). Kriosfera Zemli, 2019, Vol. 23, no. 1, pp. 3–16.
3.   Galanin A. A., Pavlova M. R., Klimova I. V. Pozdnechetvertichnye dyunnye obrazovaniya (d"olkuminskaya svita) v Tsentral'noi Yakutii (Chast' 1). Kriosfera Zemli, 2018, Vol. 22, no. 6, pp. 3–14.
4.   Zemtsov A. A. Razvevanie peskov na severe Zapadno-Sibirskoi nizmennosti. Voprosy geografii Sibiri: Sb. 4, Tomsk: Izd-vo Tomskogo universiteta, 1962, pp. 81–90.
5.   Lytkin V. M., Shaposhnikov G. I., Pavlova M. R., Vasil'eva A. N. Ispol'zovanie BPLA pri izuchenii morfologii aktivnykh dyunnykh massivov Tsentral'noi Yakutii. XXXVII plenum Geomorfologicheskoi komissii RAN: Tez. dokl, Irkutsk: Institut zemnoi kory SO RAN, 2023, pp. 207–210.
6.   Obruchev V. A. Zakaspiiskaya nizmennost': geologicheskii i orograficheskii ocherk po dannym, sobrannym vo vremya ekskursii v 1886–1887–1888 gg. SPb: Tip. Imp. Akad. nauk, 1890, 270 p.
7.   Sizov O.S., Lobzhanidze N.E. (2022) Spatial distribution of natural and anthropogenic aeolian relief in the north of Western Siberia. Geodezia i Kartografia, 83(8), pp. 22-32. (In Russian). DOI: 10.22389/0016-7126-2022-986-8-22-32.
8.   Sokolov N. A. Dyuny, ikh razvitie, obrazovanie i vnutrennee stroenie. SPb: Tip. V. Demakova, 1884, 289 p.
9.   Soromotin A. V., Sizov O. S. Aktivizatsiya eolovykh protsessov na severe Zapadnoi Sibiri v svyazi s vozrosshim antropogennym vozdeistviem. Problemy regional'noi ekologii, 2007, no. 4, pp. 12–15.
10.   Tutkovskii P. A. Iskopaemye pustyni severnogo polushariya. Moscow: Tipolitografiya Tovarishchestva I. N. Kushnerev i K°, 1910, 373 p.
11.   Fedorovich B. A. Dinamika i zakonomernosti rel'efoobrazovaniya pustyn'. Moskva: Nauka, 1983, 238 p.
12.   Khlebnikov V. I., Il'ina Z. I. Otchet partii № 5 o geologicheskoi i geomorfologicheskoi s"emke chasti basseina srednego techeniya r. Nadym masshtaba 1 : 1 000 000. Leningrad: VSEGEI, 1954, 852 p.
13.   Chichagov V. P. Aridnaya geomorfologiya. Platformennye antropogennye ravniny. Moskva: Nauchnyi mir, 2010, 513 p.
14.   Baughman C. A., Jones B. M., Bodony K. L., Mann D. H., Larsen C. F., Himelstoss E., Smith J. (2018) Remotely Sensing the Morphometrics and Dynamics of a Cold Region Dune Field Using Historical Aerial Photography and Airborne LiDAR Data. Remote Sensing, no. 10 (5), DOI: 10.3390/rs10050792.
15.   Bourke M. C., Ewing R. C., Finnegan D., McGowan H. A. (2009) Sand dune movement in the Victoria Valley, Antarctica. Geomorphology, no. 109, 3-4, pp. 148–160. DOI: 10.1016/j.geomorph.2009.02.028.
16.   Calkin P. E., Rutford R. H. (1974) The Sand Dunes of Victoria Valley, Antarctica. Geographical Review, Volume 64, no. 2, pp. 189–216.
17.   Necsoiu M., Leprince S., Hooper D. M., Dinwiddie C. L., McGinnis R. N., Walter G. R. (2009) Monitoring migration rates of an active subarctic dune field using optical imagery. Remote Sensing of Environment, Volume 113, no. 11, pp. 2441–2447. DOI: 10.1016/j.rse.2009.07.004.
18.   Ruffner K. (2005) Corona: AmericaТs First Satellite Program. Smithsonian Institution Press, Washington, DC, 216 p.
19.   Zheng Z., Du S., Taubenböck H., Zhang X. (2022) Remote sensing techniques in the investigation of aeolian sand dunes: A review of recent advances. Remote Sensing of Environment, Volume 271, no. 112913, DOI: 10.1016/j.rse.2022.112913.
Citation:
Sizov O.S., 
(2025) Cartographic assessing the morphometric and morphodynamic characteristics of the largest blowout depressions in the West Siberian north. Geodesy and cartography = Geodeziya i Kartografiya, 86(5), pp. 28-38. (In Russian). DOI: 10.22389/0016-7126-2025-1019-5-28-38
Publication History
Received: 24.09.2023
Accepted: 28.05.2025
Published: 20.06.2025

Content

2025 May DOI:
10.22389/0016-7126-2025-1019-5