UDC: 
DOI: 
10.22389/0016-7126-2025-1020-6-23-33
1 Romakh E.A.
2 Karpachevskiy A.M.
Year: 
№: 
1020
Pages: 
23-33

Lomonosov Moscow State University (MSU)

1, 
2, 
Abstract:
This research was made for passenger flow modelling in urban transport system. There are some new methods to solve this task, but they require some special programs like ArcGIS or some data like phone cells usage. This is a matter of privacy, and sometimes it is not desired to be used in research due to financial reasons. This study is focused on publicly distributed information like master plan materials. There are five steps to perform the result. The first is a building category prediction through logistic regression. The next one is construction elevation modelling through linear regression. Its levels were used as elevation metrics. After that is population distribution across the city using volume of building. The fourth is workplace distribution across buildings in the city using their volume and category. Finally, there is loading estimation which consists of creating correspondence matrix. This methodology was probed in Kazan and Nizhniy Novgorod cities, RF. As a result, overloaded places were identified. They are near city center in the route from outskirts
The research was carried out within the state budgetary theme 121051400061-9 "Development of methods and technologies of cartography, geoinformatics and aerospace sensing in nature and society research"
References: 
1.   Gasnikov A. V., Klenov S. L., Nurminskii E. A., Kholodov Ya. A., Shamrai N. B. Vvedenie v matematicheskoe modelirovanie transportnykh potokov. Moskva: MFTI, 2010, 363 p.
2.   Lyutaev D. A. Modelirovanie transportnoi seti Vladivostoka na osnove teorii potokovogo ravnovesiya. Informatika i sistemy upravleniya, 2006, no. 2, pp. 17–28.
3.   Pyshnyi V. A. Modelirovanie zagruzki transportnoi seti. Izvestiya TulGU. Tekhnicheskie nauki, 2012, no. 2, pp. 457–473.
4.   Tarelkina N. A. Regressionnyi analiz sprosa na obshchestvennyi transport. Uchenye zapiski Tambovskogo otdeleniya RoSMU, 2010, no. 20, pp. 73–81.
5.   Anderson M. K., Nielsen O. A., Prato C. G. (2017) Multimodal route choice models of public transport passengers in the Greater Copenhagen Area. EURO Journal on Transportation and Logistics, Volume 6, no. 3, pp. 221–245. DOI: 10.1007/s13676-014-0063-3.
6.   Balcombe R., Mackett R., Paulley N., Preston J., Shires J., Titheridge H., Wardman M., White P. (2004) The demand for public transport: a practical guide. Transportation Research Laboratory Report TRL593. Transportation Research Laboratory, London, 246 p.
7.   Barthelemy M. (2018) Morphogenesis of Spatial Networks. Springer. Institute de Physique Théorique, Guf-sur-Yvette, 342 p.
8.   Benenson I., Martens K., Rofe Y., Kwartler A. (2011) Public transport versus private car GIS-based estimation of accessibility applied to the Tel Aviv metropolitan area. The Annals of Regional Science, no. 47, pp. 499–515. DOI: 10.1007/s00168-010-0392-6.
9.   Brands T., de Romph E., Veitch T., Cook J. (2014) Modelling public transport route choice, with multiple access and egress modes. Transportation research procedia, Volume 1, no. 1, pp. 12–23. DOI: 10.1016/j.trpro.2014.07.003.
10.   Converse P. D. (1949) New Laws of Retail Gravitation. Journal of Marketing, no. 3 (141), pp. 379–384.
11.   Daldoul M., Jarboui S., Dakhlaoui A. (2016) Public transport demand: dynamic panel model analysis. Transportation, no. 43, pp. 491–505. DOI: 10.1007/s11116-015-9586-1.
12.   Jánošíková Ľ., Slavík J., Koháni M. (2014) Estimation of a route choice model for urban public transport using smart card data. Transportation planning and technology, Volume 37, no. 7, pp. 638–648. DOI: 10.1080/03081060.2014.935570.
13.   Kuldip S., Taylor A., Dieter P., Andreas Z. (2022) Predicting building types using Open-StreetMap. Scientific Reports, Volume 12, no. 1, DOI: 10.1038/s41598-022-24263-w.
14.   Luo J., Wei Y. D. (2006) Population distribution and spatial structure in transitional Chinese cities: A study of Nanjing. Eurasian Geography and Economics, Volume 47, no. 5, pp. 585–603. DOI: 10.2747/1538-7216.47.5.585.
15.   Nes R., Hamerslag R., Immers L.H. (1988) Design of public transport networks. Transportation research record, no. 1202, pp. 74–83.
16.   Zochowska R., Klos M., Soczowka P., Pilch M. (2022) Assessment of Accessibility of Public Transport by Using Temporal and Spatial Analysis. Sustainability, no. 14 (23), DOI: 10.3390/su142316127.
Citation:
Romakh E.A., 
Karpachevskiy A.M., 
(2025) GIS modelling of the public transport loading in city morning rush hour. Geodesy and cartography = Geodeziya i Kartografiya, 86(6), pp. 23-33. (In Russian). DOI: 10.22389/0016-7126-2025-1020-6-23-33
Publication History
Received: 17.12.2024
Accepted: 28.05.2025
Published: 20.07.2025

Content

2025 June DOI:
10.22389/0016-7126-2025-1020-6