DOI: 
10.22389/0016-7126-2025-1021-7-55-64
1 Vorobev A.V.
2 Vorobeva G.R.
Year: 
№: 
1021
Pages: 
55-64

RAS Geophysical Center

1, 

Ufa University of Science and Technology

2, 
Abstract:
Developing a specialized geoinformation solution to analyze spatiotemporal relationships between the parameters of field-aligned currents recorded by SWARM mission satellites and the morphology of auroras observed by ground-based cameras is discussed. The relevance of the study is due to the need for complex processing of heterogeneous geophysical data with different discretization to identify hidden patterns of magneto- and ionosphere interaction. A software solution based on a modular architecture is proposed, combining methods of temporal clustering, geospatial statistics and machine learning. A mathematical apparatus for spatiotemporal data conjugation was developed, taking into account orbital geometry, time delays and magnetic coordinates. Algorithms for analyzing the co-occurrence of events were implemented, including calculation of derivatives with respect to field-aligned currents, statistical assessment of correlations and classification of auroral phenomena. The tool provides interactive visualization of data in cartographic and temporal representations, as well as export of results in standard formats
The research was supported by the Russian Science Foundation grant No. 25-21-00143, https://rscf.ru/project/25-21-00143
References: 
1.   Belov I. O., Solov'ev A. A., Pilipenko V. A., Dobrovol'skii M. N., Bogoutdinov Sh. R., Kalinkin K. D. Onlain sistema dlya analiza tokov v verkhnei ionosfere po dannym sputnikov Swarm. Solnechno-zemnaya fizika, 2023, Vol. 9, no. 4, pp. 121–133. DOI: 10.12737/szf-94202314.
2.   Vorobev A. V., Soloviev A. A., Pilipenko V. A., Vorobeva G. R. Interaktivnaya komp'yuternaya model' dlya prognoza i analiza polyarnykh siyanii. Solnechno-zemnaya fizika, 2022, Vol. 8, no. 2, pp. 93–100. DOI: 10.12737/szf-82202213.
3.   Pilipenko V. A. Vozdeistvie kosmicheskoi pogody na nazemnye tekhnologicheskie sistemy. Solnechno-zemnaya fizika, 2021, Vol. 7, no. 3, pp. 73–110. DOI: 10.12737/szf-73202106.
4.   Martines-Bedenko V. A., Pilipenko V. A., Fedorov E. N., Nakhaio E., Yaizengau E. Nizkoshirotnye Ri2 volny po nablyudeniyam na sputnikakh SWARM i nazemnykh stantsiyakh. Kosmicheskie issledovaniya, 2020, Vol. 58, no. 1, pp. 5–15. DOI: 10.31857/S0023420620010057.
5.   Yagova N. V., Fedorov E. N., Pilipenko V. A., Mazur N. G., Martines-Bedenko V. A. Kolebaniya geomagnitnogo polya v diapazone 2,5–12 Gts v F-sloe ionosfery po dannym sputnikov SWARM. Solnechno-zemnaya fizika, 2023, Vol. 9, no. 1, pp. 37–50. DOI: 10.12737/stp-91202305.
6.   Anderson B. J., Korth H., Waters C. L., Green D. L., Merkin V. G., Barnes R. J., Dyrud L. P. (2014) Development of large-scale Birkeland currents determined from the active magnetosphere and planetary electrodynamics response expermenti. Geophysical Research Letters, Volume 41, no. 9, pp. 3017–3025. DOI: 10.1002/2014GL059941.
7.   Astfalk P., Jenko F. (2016) Parallel and oblique firehose instability thresholds for bi-kappa distributed protons. Journal of Geophysical Research: Space Physics, Volume 121, no. 4, pp. 2842–2852. DOI: 10.1002/2015JA022267.
8.   Gallardo-Lacourt B., Liang J., Nishimura Y., Donovan E. (2018) On the origin of STEVE: Particle precipitation or ionospheric skyglow?. Geophysical Research Letters, Volume 45, no. 16, pp. 7968–7973. DOI: 10.1029/2018GL078509.
9.   Greenwald R. A., Baker K. B., Dudeney J. R., Pinnock M., Jones T. B., Thomas E. C., Villain J.-P., Cerisier J.-C., Senior C., Hanuise C., Hunsucker R. D., Sofko G., Koehler J., Nielsen E., Pellinen R., Walke A. D. M., Sato H., Yamagishi H. (1995) DARN/SuperDARN. A global view of the dynamics of high-latitude convection. Space Science Reviews, no. 71, pp. 761–796. DOI: 10.1007/BF00751350.
10.   Kamide Y. (1982) The relationship between field-aligned currents and the auroral electrojets: A review. Space Science Reviews, Volume 31, no. 2, pp. 127–243. DOI: 10.1007/BF00215281.
11.   Mathew A. (2022) Web scraping and data analytics using Python language. International Journal of Computer Trends and Technology, no. 70 (11), pp. 15–19. DOI: 10.14445/22312803/IJCTT-V70I11P103.
12.   Mende S. B., Harris S. E., Frey H. U., Angelopoulos V., Russell C. T., Donovan E., Jackel B., Greffen M., Peticolas L. M. (2008) The THEMIS Array of Ground-based Observatories for the Study of Auroral Substorms. Space Science Reviews, no. 141, pp. 357–387. DOI: 10.1007/s11214-008-9380-x.
13.   Mooney M., Marsh M., Forsyth C., Sharpe M., Hughes T., Bingham S., Jackson D. R., Rae I. J.,Chisham G. (2021) Evaluating auroral forecasts against satellite observations. Space Weather, no. 19, 8, e2020SW002688, DOI: 10.1029/2020SW002688.
14.   Motale S. S., Urankar S. S. (2025) Using GIS in a landslide-prone area. International Journal of Advanced Research in Science, Communication and Technology, Volume 5, no. 7, pp. 323–329. DOI: 10.48175/IJARSCT-24441.
15.   Nanjo S., Nozawa S., Yamamoto M., Kawabata T., Johnsen M. G., Tsuda T. T., Hosokawa K. (2022) An automated auroral detection system using deep learning: real-time operation in Tromsø, Norway. Scientific Reports, no. 12, DOI: 10.1038/s41598-022-11686-8.
16.   Newell P. T., Sotirelis T., Wing S. (2009) Diffuse, monoenergetic, and broadband aurora: The global precipitation budget. Journal of Geophysical Research: Space Physics, no. 114, A09207, DOI: 10.1029/2009JA014326.
17.   Newell P. T., Sotirelis T., Wing S. (2010) Seasonal variations in diffuse, monoenergetic, and broadband aurora. Journal of Geophysical Research: Space Physics, no. 115, A03216, DOI: 10.1029/2009JA014805.
18.   Nose M., Hosokawa K., Nomura R. Teramoto M., Asamura K., Miyoshi Y., Mitani T., Sakanoi T., Namekawa T., Kawano T., Iwanaga Y., Tatematsu S., Hirahara M., Halford A., Shumko M., Lessard M. R., Lynch K., Paschalidis N., Jaynes A. N., McHarg M. G. (2024) Field-aligned currents associated with pulsating auroral patches: Observation with magneto-impedance magnetometer (MIM) onboard loss through auroral microburst pulsations (LAMP) sounding rocket. Journal of Geophysical Research: Space Physics, no. 129, e2023JA032232, DOI: 10.1029/2023JA032232.
19.   Robinson R. M., Kaeppler S. R., Zanetti L., Anderson B., Vines S. K., Korth H., Fitzmaurice A. (2020) Statistical relations between auroral electrical conductances and field-aligned currents at high latitudes. Journal of Geophysical Research: Space Physics, no. 125, 7, e2020JA028008, DOI: 10.1029/2020JA028008.
20.   Smith A., Paces M. (2022) Python tools for ESA’s Swarm mission: VirES for Swarm and surrounding ecosystem. Frontiers in Astronomy and Space Sciences, no. 9: 1002697, DOI: 10.3389/fspas.2022.1002697.
21.   Sharma S. (2025) Geographical Information System (GIS). International Journal of Advanced Research in Science, Communication and Technology, Volume 5, no. 2, pp. 612–614. DOI: 10.48175/IJARSCT-26278.
22.   Vorobev A. V., Pilipenko V. A., Krasnoperov R. I., Vorobeva G. R., Lorentzen D. A. (2020) Short-term forecast of the auroral oval position on the basis of the virtual globe technology. Russian journal of Earth sciences, no. 20, ES6001, DOI: 10.2205/2020ES000721.
23.   Wagh R., Auti Sh. (2025) The role of Geographic Information Systems (GIS) in Land Use Planning. International Journal of Innovations in Science Engineering And Management, Volume 4, no. 1, pp. 366–370. DOI: 10.69968/ijisem.2025v4i1366-370.
Citation:
Vorobev A.V., 
Vorobeva G.R., 
(2025) Geoinformation system for monitoring longitudinal currents based on low-orbit satellite data. Geodesy and cartography = Geodeziya i Kartografiya, 86(7), pp. 55-64. (In Russian). DOI: 10.22389/0016-7126-2025-1021-7-55-64
Publication History
Received: 29.05.2025
Accepted: 25.07.2025
Published: 20.08.2025

Content

2025 July DOI:
10.22389/0016-7126-2025-1021-7