UDC: 
DOI: 
10.22389/0016-7126-2025-1023-9-14-24
1 Lebzak A.O.
2 Yankelevich S.S.
Year: 
№: 
1023
Pages: 
14-24

Siberian State University of Geosystems and Technologies

1, 
2, 
Abstract:
Geospatial knowledge bases (GKB) make a new geoinformation product. At the same time, it has already proved its effectiveness as a decision support tool in various industries, from geology to medicine. GKB are designed to form solutions of various problems based on the formalized geospatial knowledge and ensuing procedural rules. The content of geospatial knowledge bases can be visually represented on maps using GIS tools. The purpose of the research is to study the essence, the experience of development and implementation, as well as the prospects for using them as a decision support tool. The authors examine the essence of the said bases, define their features and suggest a definition of the concept of a "geospatial knowledge base". Examples of development and implementation of these bases for various fields of activities created at the Siberian State University of Geosystems and Technologies (SSUGT) are given. They confirm the relevance and applicability of geospatial knowledge bases. Technologies such as probabilistic block-chains and geospatial knowledge graphs were identified and studied. Using them will help reduce the complexity of the process of creating geospatial knowledge bases; make them better and more accessible. The necessity of abandoning the relational model at creating GKB in favor of open ones such as the EAV is noted
References: 
1.   Brovko E. A. Sistema gosudarstvennogo topograficheskogo monitoringa: mekhanizm formirovaniya baz geoprostranstvennykh znanii ob izmeneniyakh mestnosti. Interekspo GEO-Sibir', 2023, Vol. 1, no. 2, pp. 3–9. DOI: 10.33764/2618-981X-2023-1-2-3-9.
2.   Dyshlenko S. G. Geoznanie i prostranstvennye zadachi. Perspektivy nauki i obrazovaniya. Mezhdunarodnyj jelektronnyj nauchnyj zhurnal, 2017, no. 2 (26), pp. 12–16. URL: https://pnojournal.wordpress.com/ (accessed: 05.12.2018).
3.   Krasnoshchekov A. N., Trifonova T. A., Mishchenko N. V. Geoinformatsionnye sistemy v ekologii. Vladimir: Vladimirskii gosudarstvennyi universitet, 2004, 152 p.
4.   Kovalenko N. I. Izvlechenie znanii dlya intellektual'nykh transportnykh sistem. Perspektivy nauki i obrazovaniya, 2014, no. 5 (11), pp. 45–52.
5.   Litvintseva E.K. (2025) Transition from geospatial data to geospatial knowledge: analysis of the conceptual apparatus of current Russian standards and modern domestic scientific discourse. Geodezia i Kartografia, 86(5), pp. 47-57. (In Russian). DOI: 10.22389/0016-7126-2025-1019-5-47-57.
6.   Yankelevich S.S., Kukharenko E.L. (2024) Substantiating the contents, structure and software implementation of the territorial formations geospatial knowledge base. Geodezia i Kartografia, 85(9), pp. 33-45. (In Russian). DOI: 10.22389/0016-7126-2024-1011-9-33-45.
7.   Ceballos C. J. P., Jobst M., Gartner G. (2023) Understanding Relevance in Maps through the Use of Knowledge Graphs. International Journal of Cartography, no. 9 (3), pp. 466–487. DOI: 10.1080/23729333.2023.2257962.
8.   Christidis K., Devetsikiotis M. (2016) Blockchains and smart contracts for the internet of things. IEEE Access, no. 4, pp. 2292–2303. DOI: 10.1109/ACCESS.2016.2566339.
9.   Hofer B., Mäs S., Brauner J., Bernard L. (2016) Towards a knowledge base to support geoprocessing workflow development. International Journal of Geographical Information Science, no. 31 (4), pp. 694–716. DOI: 10.1080/13658816.2016.1227441.
10.   Hofer B., Papadakis E., Mäs S. (2017) Coupling Knowledge with GIS Operations: The Benefits of Extended Operation Descriptions. ISPRS International Journal of Geo-Information, no. 6 (2): 40, DOI: 10.3390/ijgi6020040.
11.   Xu H., Ai T., Qingsheng G., Xiao Y. (2023) From maps to geospatial knowledge graph: geospatial knowledge representation and reasoning. Abstracts of the ICA, Volume 6, no. 269, DOI: 10.5194/ica-abs-6-279-2023.
12.   Yang Z., Salman T., Jain R., Di Pietro R. (2022) Decentralization using quantum blockchain: a theoretical analysis. IEEE Transactions on Quantum Engineering, no. 3, pp. 1–16. DOI: 10.1109/TQE.2022.3207111.
13.   Zhuang C., Xie Zh., Ma K., Guo M., Wu L. (2018) A Task-Oriented Knowledge Base for Geospatial Problem-Solving. ISPRS International Journal of Geo-Information, no. 7 (11), DOI: 10.3390/ijgi7110423.
Citation:
Lebzak A.O., 
Yankelevich S.S., 
(2025) Geospatial knowledge bases as a decision support tool: experience and prospects. Geodesy and cartography = Geodeziya i Kartografiya, 86(9), pp. 14-24. (In Russian). DOI: 10.22389/0016-7126-2025-1023-9-14-24
Publication History
Received: 22.04.2025
Accepted: 06.08.2025
Published: 20.10.2025

Content

2025 September DOI:
10.22389/0016-7126-2025-1023-9