УДК: 
DOI: 
10.22389/0016-7126-2024-1004-2-51-64
1 Гусев И.В.
2 Голубицкий А.М.
Год: 
№: 
1004
Страницы: 
51-64

Центральный научно-исследовательский институт машиностроения

1, 
2, 
Аннотация:
Выполнена оценка согласованности орбитальных реализаций общеземных геоцентрических систем координат, распространяемых глобальными навигационными спутниковыми системами (GPS, ГЛОНАСС, Galileo, BeiDou), с Международной земной системой координат ITRF за период 2020–2023 гг. Оценка выполнена на основе анализа суточных параметров Гельмерта, определяемых в Информационно-аналитическом центре координатно-временного и навигационного обеспечения Центрального научно-исследовательского института машиностроения при расчете апостериорной эфемеридно-временной информации для каждой орбитальной группировки. С использованием суточных параметров Гельмерта вычислены параметры согласования систем координат RSS7 и Λ на годовом интервале и их среднеквадратические отклонения StDRSS7 и StDΛ на месячном, 10-суточном и суточном интервалах усреднения, характеризующие стабильность орбитальных реализаций общеземных геоцентрических систем координат. Полученные результаты показывают следующий уровень согласования систем координат, транслируемых глобальными навигационными спутниковыми системами, с ITRF: WGS 84 (GPS) – 1–3 см; ПЗ-90.11 (ГЛОНАСС) – 9–15 см; GTRF (Galileo) – 2–5 см; BDCS (BeiDou) – 2–4 см. Выполненная оценка стабильности общеземных геоцентрических систем координат характеризуется следующими значениями на месячном интервале усреднения: WGS 84 – 5 см; ПЗ-90.11 – 10–12 см; GTRF – 4–5 см, BDCS – 7 см
Исследование выполнено в рамках Федерального проекта «Поддержание, развитие и использование системы ГЛОНАСС» Государственной программы Российской Федерации «Космическая деятельность России» на 2021–2030 гг., ЕГИСУ № 1210806000081-5

Список литературы: 
1.   Гусев И.В. Оценка согласованности системы координат ПЗ-90 с Международной земной системой координат ITRF // Геодезия и картография. – 2023. – № 6. – С. 2-11. DOI: 10.22389/0016-7126-2023-996-6-2-11.
2.   Параметры Земли 1990 года (ПЗ-90.11): Специализированный справочник – М.: ВТУ ГШ ВСРФ, – 2020. – 64 c.
3.   Altamimi Z., Rebischung P., Collilieux X., Métivier L., Chanard K. (2023) ITRF2020: an augmented reference frame refining the modeling of nonlinear station motions // Journal of Geodesy. 97 (47), 22 p. DOI: 10.1007/s00190-023-01738-w.
4.   (2020) China Satellite Navigation Office. BeiDou Navigation Satellite System. Signal In Space. Interface Control Document. Precise Point Positioning Service Signal PPP-B2b (Version 1.0) 45 p.
5.   Enderle W., Schoenemann E., Zimmermann F., Springer T. (2020) Galileo Terrestrial Reference Frame (GTRF). 17th Meeting of the International Committee on GNSS. Working Group D. Madrid, Spain 12 p.
6.   (2023) EU. Galileo Open Service. Service definition document (OS SDD) 1.3, 72 p. DOI: 10.2878/08361.
7.   Gendt G., Altamimi Z., Dach R., Söhne W., Springer T. (2011) GGSP: Realisation and maintenance of the Galileo Terrestrial Reference Frame // Advances in Space Research. 47 (2), pp. 174–185. DOI: 10.1016/j.asr.2010.02.001.
8.   Gusev I. V. (2023) GNSS terrestrial reference frames coincidence level since 2020. 17th Meeting of the International Committee on GNSS. Working Group D. Madrid, Spain 27 p.
9.   Kawakami T., Malys S., Kohm K., Smith A., Tollefson A., Wong R. (2023) Six years of Precise Point Positioning (PPP) in WGS 84. 17th Meeting of the International Committee on GNSS. Working Group D. Madrid, Spain 16 p.
10.   Liu L., Xu J., Zhou Sh. (2018) Development and update strategy of BeiDou reference frame. 13th Meeting of the International Committee on GNSS. Working Group D. XiТan, China 15 p.
11.   Liu L., Zhou Sh., Qu W., Xu J., Jiang Y., Zhou W., Zhang H., Xia F., Chen G., Hu X. (2023) BeiDou coordinate system (BDCS) status and accuracy assessment. 17th Meeting of the International Committee on GNSS. Working Group D. Madrid, Spain 20 p.
12.   Malys S., Solomon R., Drotar J., Kawakami T., Johnson T. (2020) Compatibility of Terrestrial Reference Frames used in GNSS broadcast messages during an 8 week period of 2019 // Advances in Space Research. 67 (2), pp. 834–844. DOI: 10.1016/j.asr.2020.11.029.
13.   (2014) National Geospatial Intelligence Agency. Department of Defense World Geodetic System 1984. Its definition and relationships with local geodetic systems. Standardization document, ver.1.0.0. Office of geomatics 207 p.
14.   Snay R. A., Soler T. (2000) Modern terrestrial reference systems. Part 3: WGS 84 and ITRS // Professional Surveyor. 20 (3), pp. 1–3.
15.   Söhne W., Dach R., Springer T., Gendt G. (2009) Galileo terrestrial reference frame realization and beyond: the GGSP project. European geosciences union (EGU) General assembly // Geophysical Research Abstracts. 11,
16.   (2016) State Council Information Office of China. ChinaТs BeiDou navigation satellite system. White Paper, 1st ed. 23 p.
17.   Wu F. (2018) BeiDou coordinate system and its first realization. 13th Meeting of the International Committee on GNSS. Working Group D. XiТan, China 23 p.
Образец цитирования:
Гусев И.В., 
Голубицкий А.М., 
Оценка согласованности орбитальных реализаций систем координат, распространяемых глобальными навигационными спутниковыми системами, с Международной земной системой координат ITRF за 2020–2023 гг. // Геодезия и картография. – 2024. – № 2. – С. 51-64. DOI: 10.22389/0016-7126-2024-1004-2-51-64
СТАТЬЯ
Поступила в редакцию: 16.02.2024
Принята к публикации: 04.03.2024
Опубликована: 20.03.2024

Содержание номера

2024 февраль DOI:
10.22389/0016-7126-2024-1004-2