UDC: 
DOI: 
10.22389/0016-7126-2024-1004-2-51-64
1 Gusev I.V.
2 Golubitskiy A.M.
Year: 
№: 
1004
Pages: 
51-64

Central Research Institute for Machine Building

1, 
2, 
Abstract:
The compatibility assessment of the terrestrial reference frames orbital realizations broadcasted by the global navigation satellite systems (GPS, GLONASS, Galileo and BeiDou) with the International terrestrial reference frame ITRF during 2020–2023 was performed. The assessment is based on the analysis of daily Helmert transformation parameters determined in the Information and Analysis Center for Positioning, Navigation and Timing of the Central Research Institute for Machine Building within calculating a posteriori ephemeris and time information for each constellation. Based on the daily Helmert transformation parameters, annual reference frames coincidence parameters RSS7 and Λ and their standard deviations StDRSS7 and StDΛ on the monthly, 10-day and daily averaging intervals were computed, characterizing the stability of terrestrial reference frames orbital realizations. The obtained results show the following level of coincidence between the terrestrial reference frames broadcasted by global navigation satellite systems and ITRF: WGS 84 (GPS) – 1–3 cm, PZ-90.11 (GLONASS) – 9–15 cm, GTRF (Galileo) – 2–5 cm, BDCS (BeiDou) – 2–4 cm. The performed assessment of the TRFs stability is marked by the following values on a monthly averaging interval: WGS 84 – 5 cm, PZ-90.11 – 10–12 cm, GTRF – 4–5 cm, BDCS – 7 cm
The study was carried out within the framework of the Federal project "Maintenance, development and use of the GLONASS system" of the State program of the Russian Federation "Space activities of Russia" for 2021–2030, EGISU No. 1210806000081-5
References: 
1.   Gusev I.V. (2023) Compatibility assessment of the PZ-90 reference frame with the International terrestrial reference frame (ITRF). Geodezia i Kartografia, 84(6), pp. 2-11. (In Russian). DOI: 10.22389/0016-7126-2023-996-6-2-11.
2.   Parametry Zemli 1990 goda (PZ-90.11). Spetsializirovannyi spravochnik. Moskva: VTU GSh VSRF, 2020, 64 p.
3.   Altamimi Z., Rebischung P., Collilieux X., Métivier L., Chanard K. (2023) ITRF2020: an augmented reference frame refining the modeling of nonlinear station motions. Journal of Geodesy, no. 97 (47), 22 p. DOI: 10.1007/s00190-023-01738-w.
4.   (2020) China Satellite Navigation Office. BeiDou Navigation Satellite System. Signal In Space. Interface Control Document. Precise Point Positioning Service Signal PPP-B2b (Version 1.0). 45 p.
5.   Enderle W., Schoenemann E., Zimmermann F., Springer T. (2020) Galileo Terrestrial Reference Frame (GTRF). 17th Meeting of the International Committee on GNSS. Working Group D. Madrid, Spain. 12 p.
6.   (2023) EU. Galileo Open Service. Service definition document (OS SDD). no. 1.3, 72 p. DOI: 10.2878/08361.
7.   Gendt G., Altamimi Z., Dach R., Söhne W., Springer T. (2011) GGSP: Realisation and maintenance of the Galileo Terrestrial Reference Frame. Advances in Space Research, no. 47 (2), pp. 174–185. DOI: 10.1016/j.asr.2010.02.001.
8.   Gusev I. V. (2023) GNSS terrestrial reference frames coincidence level since 2020. 17th Meeting of the International Committee on GNSS. Working Group D. Madrid, Spain. 27 p.
9.   Kawakami T., Malys S., Kohm K., Smith A., Tollefson A., Wong R. (2023) Six years of Precise Point Positioning (PPP) in WGS 84. 17th Meeting of the International Committee on GNSS. Working Group D. Madrid, Spain. 16 p.
10.   Liu L., Xu J., Zhou Sh. (2018) Development and update strategy of BeiDou reference frame. 13th Meeting of the International Committee on GNSS. Working Group D. XiТan, China. 15 p.
11.   Liu L., Zhou Sh., Qu W., Xu J., Jiang Y., Zhou W., Zhang H., Xia F., Chen G., Hu X. (2023) BeiDou coordinate system (BDCS) status and accuracy assessment. 17th Meeting of the International Committee on GNSS. Working Group D. Madrid, Spain. 20 p.
12.   Malys S., Solomon R., Drotar J., Kawakami T., Johnson T. (2020) Compatibility of Terrestrial Reference Frames used in GNSS broadcast messages during an 8 week period of 2019. Advances in Space Research, no. 67 (2), pp. 834–844. DOI: 10.1016/j.asr.2020.11.029.
13.   (2014) National Geospatial Intelligence Agency. Department of Defense World Geodetic System 1984. Its definition and relationships with local geodetic systems. Standardization document, ver.1.0.0. Office of geomatics. 207 p.
14.   Snay R. A., Soler T. (2000) Modern terrestrial reference systems. Part 3: WGS 84 and ITRS. Professional Surveyor, no. 20 (3), pp. 1–3.
15.   Söhne W., Dach R., Springer T., Gendt G. (2009) Galileo terrestrial reference frame realization and beyond: the GGSP project. European geosciences union (EGU) General assembly. Geophysical Research Abstracts, no. 11,
16.   (2016) State Council Information Office of China. ChinaТs BeiDou navigation satellite system. White Paper, 1st ed.. 23 p.
17.   Wu F. (2018) BeiDou coordinate system and its first realization. 13th Meeting of the International Committee on GNSS. Working Group D. XiТan, China. 23 p.
Citation:
Gusev I.V., 
Golubitskiy A.M., 
(2024) Compatibility assessment of the reference frames orbital realizations broadcasted by the global navigation satellite systems with the International terrestrial reference frame (ITRF) during 2020–2023. Geodesy and cartography = Geodezia i Kartografia, 85(2), pp. 51-64. (In Russian). DOI: 10.22389/0016-7126-2024-1004-2-51-64
Publication History
Received: 16.02.2024
Accepted: 04.03.2024
Published: 20.03.2024

Content

2024 February DOI:
10.22389/0016-7126-2024-1004-2