UDC: 
DOI: 
10.22389/0016-7126-2025-1024-10-55-64
1 Gusev I.V.
2 Golubitskiy A.M.
Year: 
№: 
1024
Pages: 
55-64

Central Research Institute for Machine Building

1, 
2, 
Abstract:
A comparative analysis of the transformation parameters of the BDCS and PZ-90.11 reference frames orbital realizations, broadcasted by the global navigation satellite systems BDS (China) and GLONASS (Russia), respectively, with International Terrestrial Reference Frame was performed. Helmert parameters were calculated for the period between January 1 and December 31, 2020 for each day independently by the Shanghai Astronomical Observatory and by the Central Research Institute for Machine Building. Comparison results showed good agreement between two series of BDCS and ITRF transformation parameters estimates. For PZ-90.11 and ITRF the agreement was slightly worse since the estimates based on the Chinese data were almost 2 times more optimistic than the Russian ones. Using two independent Helmert parameters sets, the coincidence parameters for reference frames relative to ITRF were calculated. The comparison of two series of coincidence parameters estimates for 150 days calculated for BDCS and ITRF is characterized by a correlation coefficient of 0,98 and by mutual standard deviation of 1,0 cm; for PZ-90.11 and ITRF, the correlation coefficient was 0,51 and the standard deviation was 8,4 cm
References: 
1.   Gusev I.V. (2023) Compatibility assessment of the PZ-90 reference frame with the International terrestrial reference frame (ITRF). Geodezia i Kartografia, 84(6), pp. 2-11. (In Russian). DOI: 10.22389/0016-7126-2023-996-6-2-11.
2.   Gusev I.V., Golubitskiy A.M. (2024) Compatibility assessment of the reference frames orbital realizations broadcasted by the global navigation satellite systems with the International terrestrial reference frame (ITRF) during 2020–2023. Geodezia i Kartografia, 85(2), pp. 51-64. (In Russian). DOI: 10.22389/0016-7126-2024-1004-2-51-64.
3.   Kozlov S. V., Zueva A. N., Novikov E. V., Pleshakov D. I. Itogi modernizatsii i perspektivy razvitiya sistemy geodezicheskikh parametrov PZ-90 v tselyakh povysheniya tochnosti geodezicheskogo obespecheniya global'noi navigatsionnoi sputnikovoi sistemy GLONASS. Trudy Instituta prikladnoi astronomii RAN, 2015, no. 35, pp. 11–16.
4.   Neiman Yu.M., Sugaipova L.S. (2022) On the coordinate systems transformation. Geodezia i Kartografia, 83(9), pp. 21-29. (In Russian). DOI: 10.22389/0016-7126-2022-987-9-21-29.
5.   Boucher C., Altamimi Z. (2001) ITRS, PZ-90 and WGS 84: current realizations and the related transformation parameters. Journal of Geodesy, no. 75, pp. 613–619.
6.   Gendt G., Altamimi Z., Dach R., Söhne W., Springer T. (2011) GGSP: Realisation and maintenance of the Galileo Terrestrial Reference Frame. Advances in Space Research, no. 47 (2), pp. 174–185. DOI: 10.1016/j.asr.2010.02.001.
7.   Ineichen D., Rothacher M., Springer T., Beutler G. (2000) Computation of precise GLONASS orbits for IGEX-98. Geodesy Beyond 2000: The Challenges of the First Decade. pp. 26–31. DOI: 10.1007/978-3-642-59742-8_5.
8.   Malys S., Solomon R., Drotar J., Kawakami T., Johnson T. (2020) Compatibility of Terrestrial Reference Frames used in GNSS broadcast messages during an 8 week period of 2019. Advances in Space Research, no. 67 (2), pp. 834–844. DOI: 10.1016/j.asr.2020.11.029.
9.   Misra P., Abbot R., Gaposchkin E. (1996) Integrated use of GPS and GLONASS: transformation between WGS 84 and PZ-90. Proceedings of ION GPS96. pp. 307–314.
10.   Mitrikas V. V., Revnivykh S. G., Bykhanov E. V. (1998) WGS 84/PZ-90 transformation parameters determination based on laser and ephemeris long-term GLONASS orbital data processing. Proceedings of ION GPS98. pp. 1625–1635.
11.   Mitrikas V. V., Revnivykh S. G., Glotov V. D., Zinkovski M. V. (1999) PZ-90 GLONASS to ITRF transformation as a result of IGEX-98 laser tracking campaign. IGEX-98 Workshop Proceedings. pp. 275–300.
12.   Montenbruck O., Steigenberger P., Hauschild A. (2015) Broadcast versus precise ephemerides: a multi-GNSS perspective. GPS solutions, no. 19, pp. 321–333. DOI: 10.1007/s10291-014-0390-8.
13.   Montenbruck O., Steigenberger P., Prange L., et. al. (2017) The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS) – achievements, prospects and challenges. Advances in Space Research, no. 59 (7), pp. 1671–1697. DOI: 10.1016/j.asr.2017.01.011.
14.   Nicolini L., Caporali A. (2018) Investigation on reference frames and time systems in multi-GNSS. Remote Sensing, no. 10 (1), DOI: 10.3390/rs10010080.
15.   Petit G., Luzum B. (2010) The IERS Conventions. Bundesamts fur Kartographie und Geodasie, Frankfurt am Main, 179 p.
16.   Shen Y. Z., Chen Y., Zheng D. H. (2006) A quaternion-based geodetic datum transformation algorithm. Journal of Geodesy, no. 80, pp. 233–239. DOI: 10.1007/s00190-006-0054-8.
Citation:
Gusev I.V., 
Golubitskiy A.M., 
(2025) Comparative analysis of BDCS and PZ-90.11 orbital realizations transformation parameters with ITRF, calculated by the Russian and Chinese sides for the period of August – December 2020. Geodesy and cartography = Geodeziya i Kartografiya, 86(10), pp. 55-64. (In Russian). DOI: 10.22389/0016-7126-2025-1024-10-55-64
Publication History
Received: 04.06.2025
Accepted: 22.09.2025
Published: 20.11.2025

Content

2025 October DOI:
10.22389/0016-7126-2025-1024-10