ISSN 0016-7126 (Print)
ISSN 2587-8492 (Online)
| 1. Gusev I.V. (2023) Compatibility assessment of the PZ-90 reference frame with the International terrestrial reference frame (ITRF). Geodezia i Kartografia, 84(6), pp. 2-11. (In Russian). DOI: 10.22389/0016-7126-2023-996-6-2-11. |
| 2. Gusev I.V., Golubitskiy A.M. (2024) Compatibility assessment of the reference frames orbital realizations broadcasted by the global navigation satellite systems with the International terrestrial reference frame (ITRF) during 2020–2023. Geodezia i Kartografia, 85(2), pp. 51-64. (In Russian). DOI: 10.22389/0016-7126-2024-1004-2-51-64. |
| 3. Kozlov S. V., Zueva A. N., Novikov E. V., Pleshakov D. I. Itogi modernizatsii i perspektivy razvitiya sistemy geodezicheskikh parametrov PZ-90 v tselyakh povysheniya tochnosti geodezicheskogo obespecheniya global'noi navigatsionnoi sputnikovoi sistemy GLONASS. Trudy Instituta prikladnoi astronomii RAN, 2015, no. 35, pp. 11–16. |
| 4. Neiman Yu.M., Sugaipova L.S. (2022) On the coordinate systems transformation. Geodezia i Kartografia, 83(9), pp. 21-29. (In Russian). DOI: 10.22389/0016-7126-2022-987-9-21-29. |
| 5. Boucher C., Altamimi Z. (2001) ITRS, PZ-90 and WGS 84: current realizations and the related transformation parameters. Journal of Geodesy, no. 75, pp. 613–619. |
| 6. Gendt G., Altamimi Z., Dach R., Söhne W., Springer T. (2011) GGSP: Realisation and maintenance of the Galileo Terrestrial Reference Frame. Advances in Space Research, no. 47 (2), pp. 174–185. DOI: 10.1016/j.asr.2010.02.001. |
| 7. Ineichen D., Rothacher M., Springer T., Beutler G. (2000) Computation of precise GLONASS orbits for IGEX-98. Geodesy Beyond 2000: The Challenges of the First Decade. pp. 26–31. DOI: 10.1007/978-3-642-59742-8_5. |
| 8. Malys S., Solomon R., Drotar J., Kawakami T., Johnson T. (2020) Compatibility of Terrestrial Reference Frames used in GNSS broadcast messages during an 8 week period of 2019. Advances in Space Research, no. 67 (2), pp. 834–844. DOI: 10.1016/j.asr.2020.11.029. |
| 9. Misra P., Abbot R., Gaposchkin E. (1996) Integrated use of GPS and GLONASS: transformation between WGS 84 and PZ-90. Proceedings of ION GPS96. pp. 307–314. |
| 10. Mitrikas V. V., Revnivykh S. G., Bykhanov E. V. (1998) WGS 84/PZ-90 transformation parameters determination based on laser and ephemeris long-term GLONASS orbital data processing. Proceedings of ION GPS98. pp. 1625–1635. |
| 11. Mitrikas V. V., Revnivykh S. G., Glotov V. D., Zinkovski M. V. (1999) PZ-90 GLONASS to ITRF transformation as a result of IGEX-98 laser tracking campaign. IGEX-98 Workshop Proceedings. pp. 275–300. |
| 12. Montenbruck O., Steigenberger P., Hauschild A. (2015) Broadcast versus precise ephemerides: a multi-GNSS perspective. GPS solutions, no. 19, pp. 321–333. DOI: 10.1007/s10291-014-0390-8. |
| 13. Montenbruck O., Steigenberger P., Prange L., et. al. (2017) The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS) – achievements, prospects and challenges. Advances in Space Research, no. 59 (7), pp. 1671–1697. DOI: 10.1016/j.asr.2017.01.011. |
| 14. Nicolini L., Caporali A. (2018) Investigation on reference frames and time systems in multi-GNSS. Remote Sensing, no. 10 (1), DOI: 10.3390/rs10010080. |
| 15. Petit G., Luzum B. (2010) The IERS Conventions. Bundesamts fur Kartographie und Geodasie, Frankfurt am Main, 179 p. |
| 16. Shen Y. Z., Chen Y., Zheng D. H. (2006) A quaternion-based geodetic datum transformation algorithm. Journal of Geodesy, no. 80, pp. 233–239. DOI: 10.1007/s00190-006-0054-8. |
| (2025) Comparative analysis of BDCS and PZ-90.11 orbital realizations transformation parameters with ITRF, calculated by the Russian and Chinese sides for the period of August – December 2020. Geodesy and cartography = Geodeziya i Kartografiya, 86(10), pp. 55-64. (In Russian). DOI: 10.22389/0016-7126-2025-1024-10-55-64 |