1 Brovko E.A.
2 Sofinov R.E.

Priroda, Research-and-Production Center, FSUE


Scientific-Analytical Center Geoanalysis, Ltd

Modeling the techniques and methods of automated generalization of digital cartographic image, based on scientific and methodological and technological approaches offered by the authors focused on the use of the results in the state topographic monitoring (STM), including the territory of the Arctic zone of the Russian Federation (AZRF) is presented. Simulation was carried out by the example of the site area, located in the Murmansk region relating to the areas with high anthropogenic impact on the natural environment i.e. impact areas of the Russian Arctic. Techniques and methods outlined in this publication greatly enable optimizing the automated generalization of digital map images, as one of the directions in solving the problem of modernization of methods and technologies of renovating public digital topographic maps and keeping them up to date on the basis of geological and technical data. Software tools available in the field of geodesy and cartography provide a high automation level of the generalization process in the range of 30–50 %. Under authors' assumption the implementation of the suggested techniques and methods of automated generalizing digital map images, will improve the level at 20–25 %. It will ensure their economic viability for actual digital cartographic products.
1.   Brovko E.A. (2012) State topographical monitoring: modern solution to actualization problems of spatial data management. Geodezia i Kartografia, 73(2), pp. 38–46.
2.   Brovko E.A., Efimov S.A., Mironenko A.N., Dubenskov S.O. Gosudarstvennyj topograficheskij monitoring v nacional'noj sisteme aktualizacii prostranstvennyh dannyh na sovremennom ehtape razvitiya otechestvennyh kosmicheskih sredstv DZZ. Materialy vtoroj mezhdunar. nauch.-tekhn. konf. «Aktual'nye problemy sozdaniya kosmicheskih sistem distancionnogo zondirovaniya Zemli. Voprosy ehlektromekhaniki»: Tr. VNIIEHM, 2014, pp. 19–23.
3.   Brovko E.A., Sofinov R.E. (2015) State topographical monitoring. The automated generalization of the digital cartographical image. Methodological and technological aspects (part one). Geodezia i Kartografia, (11), pp. 20–25. (In Russian). DOI: 10.22389/0016-7126-2015-905-11-20-25.
4.   Gosudarstvennaya programma Rossijskoj Federacii «Social'no-ehkonomicheskoe razvitie Arkticheskoj zony Rossijskoj Federacii na period do 2020 goda». Utv. Postanovleniem Pravitel'stva Rossijskoj Federacii ot 21 aprelya 2014 g. № 366. URL: http://base.garant.ru/70644266
5.   Klassifikator kartograficheskoj informacii cifrovyh i ehlektronnyh planov gorodov, topograficheskih, obzorno-geograficheskih i aviacionnyh kart. M.: izd. VTU GSH, 2008, 270 p.
6.   Strategiya razvitiya Arkticheskoj zony Rossijskoj Federacii i obespecheniya nacional'noj bezopasnosti na period do 2020 goda. Utv. Prezidentom Rossijskoj Federacii V. V. Putinym 08.02.2013 g. № Pr. 232.5. URL: http://www.consultant.ru/document/cons_doc_LAW_142561
7.   Federal'nyj zakon ot 30.12.2015 g. № 431-FZ «O geodezii, kartografii i prostranstvennyh dannyh i o vnesenii izmenenij v otdel'nye zakonodatel'nye akty Rossijskoj Federacii». URL: http://www.consultant.ru/document/cons_doc_LAW_191496
Brovko E.A., 
Sofinov R.E., 
(2016) State topographic monitoring. Automated generalization of digital cartographic image: modeling techniques and methods (Part 2). Geodesy and cartography = Geodezia i Kartografia, (11), pp. 24–31. (In Russian). DOI: 10.22389/0016-7126-2016-917-11-24-31
Publication History
Received: 21.01.2016
Accepted: 19.10.2016
Published: 21.12.2016


2016 November DOI: