UDC: 
DOI: 
10.22389/0016-7126-2016-911-5-43-51
1 Kosikov A.G.
2 Ushakova L.A.
Year: 
№: 
911
Pages: 
43-51

Lomonosov Moscow State University (MSU)

1, 
2, 
Abstract:
The article discusses methods for visualization of multidimensional space-time (3D raster, time) environmental models. It analyzes the range of existing tools for building and rendering the 3D raster voxel spatial models and ascertain only a few designated for this purpose programs. The authors focus attention on the approach to the representation of 3D and 4D spatial information in multidimensional, volumetric, space-time digital model, each cell describes the state of the real space elementary volume at a time. This model is seen by them as the basis for an automated, self organizing, modeling computational process. The article presents a common algorithm for the generation of multidimensional space-time environmental model virtual geoimages and provides some examples for the Earth and its polar areas models, built as a part of the authors experimental work. The article describes the features of the real time virtual modeling with the use of virtual audio and video variables in a program-controlled environment and proposes some different approaches to the large multidimensional models visualization. The authors note the progress of 3D volumetric visualization methods and devices, and conclude what the global multidimensional spacetime environmental virtual model development will require to create intelligent volumetric visualizing virtual geoimages.
References: 
1.   Berlyant A.M. Virtual'nye geoizobrazheniya. M.: Nauchnyj mir, 2001, 54 p.
2.   Berlyant A.M. Globusy. M.: GEOS, 2006, 79 p.
3.   Berlyant A.M. Teoriya geoizobrazhenij. М.: GEOS, 2006, 261 p.
4.   Kosikov A.G. Ideal'nye modeli real'nosti dlya geograficheskih issledovanij. Izv. vuzov. Geodeziya i aehrofotos"emka, 2014, no. 5, pp. 81–87.
5.   Ushakova L.A., Kosikov A.G. (2014) Cartographic design of multimeasuring geographic models. Geodezia i Kartografia, (12), pp. 30-38. (In Russian). DOI: 10.22389/0016-7126-2014-894-12-30-38.
6.   Becker T.W. Visualization. URL: http://earth.usc.edu/~becker/vdata.html
7.   Chandler G. (2014) Enhancing geological interpretations with gravity and magnetics across all petroleum plays. Earth Explorer, URL: http://www.earthexplorer.com/2014/Enhancing_geological_interpretations_with_gravity_and_magnetics_across_all_petroleum_plays.asp
8.   Chandler G. (2015) A hybrid solution worth its salt. Earth Explorer, URL: http://www.earthexplorer.com/2015/A_Hybrid_Solution_Worth_its_Salt.asp
9.   GRASS – 3D raster data in GRASS GIS. URL: https://grass.osgeo.org/grass71/manuals/raster3dintro.html
10.   Kaufman A., Cohen D., Yagel R. (1993) Volume Graphics. IEEE Computer, Volume 26, no. 7, pp. 51–64.
11.   Los Alamos National Laboratory – The art of climate modeling. URL: http://www.lanl.gov/newsroom/picture-ofthe-week/pic-week-2.php
12.   Ray H., Pfister H., Silver D., Cook T. (1999) Ray Casting Architectures for Volume Visualization. IEEE Transactions on Visualization and Computer Graphics, Volume 5, no. 3, pp. 210–223.
13.   Yagel R. (1996) Towards Real Time Volume Rendering. Proceedings of GRAPHICON 1996 Saint-Petersburg, Russia, Volume 1, pp. 230–241.
Citation:
Kosikov A.G., 
Ushakova L.A., 
(2016) Virtual geoimages of multidimensional space-time enviromental models. Geodesy and cartography = Geodezia i Kartografia, (5), pp. 43-51. (In Russian). DOI: 10.22389/0016-7126-2016-911-5-43-51
Publication History
Received: 24.08.2015
Accepted: 29.02.2016
Published: 20.06.2016

Content

2016 May DOI:
10.22389/0016-7126-2016-911-5

QR-code page

QR-код страницы