ISSN 0016-7126 (Print)
ISSN 2587-8492 (Online)
1. Abalakin V. K., Aksenov E. P., Grebennikov E. A., Demin V. G., Ryabov YU. A. Spravochnoe rukovodstvo po nebesnoj mekhanike i astrodinamike. M.: Nedra, 1976, 864 p. |
2. Bordovicyna T. V. Sovremennye chislennye metody v zadachah nebesnoj mekhaniki. M.: Nedra, 1984, 136 p. |
3. Kaula V. M. Kosmicheskaya geodeziya / Per. s angl. M.: Nedra, 1966, 163 p. |
4. Sorokin N. A. Vychislenie polinomov Kanningehma pri chislennom integrirovanii uravnenij dvizheniya ISZ. Izvestia vuzov «Geodesy and aerophotography», 1999, no. 4, pp. 73-90. |
5. Cunningham L. E. (1970) On the computation of the spherical harmonic terms needed uring the numerical integration of the orbital motion of an artificial satellite. Volume 2, Celestial Mechanics, pp. 207-216. |
6. Heiskanen W. A., Moritz H. (1993) Physical geodesy. Graz, Austria, 364 p. |
7. (2004) IERS Conventions (2003). Frankfurt am Main, |
8. Petrovskaya M. S., Vershkov A. N. (2010) Construction of spherical harmonic series for the potential derivatives of arbitrary orders in the geocentric Earth-fixed reference frame. Journal of Geodesy, Volume 84, pp. 165-178. |
9. Petrovskaya M. S., Vershkov A. N. (2012) Basic equations for constructing geopotential models from the gravitational potential derivatives of the first and second orders in the terrestrial reference frame. Journal of Geodesy, Volume 86, pp. 521-530. |
10. Stummer C., Fecher T., Pail R. (2011) Alternative method for angular rate determination within the GOCE gradiometer processing. Journal of Geodesy, Volume 85, 585 p. DOI: 10.1007/s00190-011-0461-3. |
11. Weiyong Yi (2012) An alternative computation of a gravity field model from GOCE. Advances in Space Research, Volume 50, pp. 371–384. |
(2017) Earth's gravity field parameters determination by the space geodesy dynamical approach. Geodesy and cartography = Geodezia i Kartografia, (1), pp. 7-12. (In Russian). DOI: 10.22389/0016-7126-2017-919-1-7-12 |