UDC: 
DOI: 
10.22389/0016-7126-2017-920-2-26-32
1 Abdullin R.K.
2 Shikhov A.N.
Year: 
№: 
920
Pages: 
26-32

Perm State National Research University

1, 
2, 
Abstract:
The article describes a method of mapping climatic parameters (i. e. frequency and intensity) of severe weather events, based on the interpolation of weather station data. We applied regression-based interpolation, using some geographical variables (altitude, slope angle and curvature) for modeling their spatial distribution. Statistically significant correlations between geographical and climatic variables were selected based on regression analysis. They have been used to create a maps of frequency, average and maximum intensity of severe weather events for Perm region (160 600 km2). The proposed method allows to create more accurate and detailed maps of spatial distribution of severe weather events than traditional deterministic and geostatistical interpolation methods. The reliability of the results confirmed by a weather station observations and comparisons with MODIS satellite images thematic products. Significant advantage of proposed method is also its applicability to the risk assessment of severe weather events in ungauged site, or in ungauged areas.
References: 
1.   Atlas prirodnyh i tekhnogennyh opasnostej i riskov chrezvychajnyh situacij v Rossijskoj Federacii. Pod red. S.K. Shojgu. M.: Feoriya, 2005, 271 p.
2.   Kalinin N.A., Frik L.V., Smirnova A.A. Issledovanie vliyaniya rel'efa Permskogo kraya na raspredelenie polej osadkov. Geograficheskij vestnik, 2008, no. 2, pp. 187‒195.
3.   Panfutova Yu. A. Opasnye meteorologicheskie yavleniya na ravninnoj territorii Rossii i riski, sozdavaemye imi: Avtoref. dis. na soisk. uch. st. kand. geogr. nauk.. SPb.: GU «Gosudarstvennaya geofizicheskaya observatoriya», 2008, 21 p.
4.   Shutov V.A. Metody analiza prostranstvennoj izmenchivosti snegozapasov. Izv. RAN. Seriya geograficheskaya, 1998, no. 1, pp. 122‒132.
5.   Chung U., Seo H.H., Hwang K.H., Hwang B.S., Choi J., Lee J.T., Yun J. I. (2006) Minimum temperature mapping over complex terrain by estimating cold air accumulation potential. Agricultural and Forest Meteorology, Volume 137, pp. 15‒24. DOI: 10.1016/j.agrformet.2005.12.011.
6.   Moral F.J. (2010) Comparison of different geostatistical approaches to map climate variables: Application to precipitation. International Journal of Climatology, Volume 30, pp. 620‒631. DOI: 10.1002/joc.1913.
7.   Ninyerola M., Pons X., Roure J.M. (2000) A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques. International Journal of Climatology, Volume 20, pp. 1823‒1841.
8.   Vicente-Serrano S.M., Saz-Sánchez M.A., Cuadrat J.M. (2003) Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): Application to annual precipitation and temperature. Climate Research, Volume 24, pp. 161‒180.
9.   Weisse A.K., Bois Ph. (2002) A comparison of methods for mapping statistical characteristics of heavy rainfall in the French Alps: The use of daily information. Hydrological Sciences Journal, Volume 47, pp. 739‒752.
10.   Zheng X., Zhu J., Yan Q. (2013) Monthly air temperatures over northern China estimated by integrating MODIS data with GIS techniques. Journal of Applied Meteorology and Climatology, Volume 52, pp. 1987‒2000. DOI: 10.1175/JAMC-D-12-0264.1.
Citation:
Abdullin R.K., 
Shikhov A.N., 
(2017) GIS based modelling of spatial and temporal distribution of severe weather events. Geodesy and cartography = Geodezia i Kartografia, (2), pp. 26-32. (In Russian). DOI: 10.22389/0016-7126-2017-920-2-26-32
Publication History
Received: 12.07.2016
Accepted: 31.10.2016
Published: 28.02.2017

Content

2017 february DOI:
10.22389/0016-7126-2017-920-2