UDC: 
DOI: 
10.22389/0016-7126-2018-934-4-2-7
1 Medvedev P.A.
2 Novgorodskaya M.V.
Year: 
№: 
934
Pages: 
2-7

Omsk State Agrarian University named after P.A. Stolypin

1, 
2, 
Abstract:
This work contains continued research carried out on improving mathematical models of the Gauss-Krueger projection in accordance with the parameters of any ellipsoid with the removal of points from the axial meridian to l ≤ 6° . In terms of formulae earlier derived by the authors with improved convergence for the calculation of planar rectangular coordinates by geodesic coordinates, the algorithms for determining the convergence of meridians on the plane and the scale of the image are obtained. The improvement of the formulae represented in the form of series in powers of the difference in longitudes was accomplished by separating spherical terms in series and then replacing their approximate sums by exact expressions using the formulae of spherical trigonometry. As in previous works published in this journal [7, 8], determining the sums of the spherical terms was carried out according to the laws of the transverse-cylindrical projection of the sphere on the plane. Theoretical studies are given and formulae are proposed for estimating the observational errors in the results of the derived algorithms. The maximum of observational errors of convergence of meridians and scale, proceeding from the specified accuracy of the determined quantities was established through analytical methods.
References: 
1.   Bagratuni G. V. Kurs sveroidicheskoy geodezii. Mоskva: Geodezizdat, 1962, 252 p.
2.   Balandin V. N., Men’shikov I. V., Firsov Yu. G. Preobrazovanie koordinat iz odnoy sistemy v druguyu. Sankt-Peterburg: Sborka, 2016, 90 p.
3.   Zakatov P. S. Kurs vysshey geodezii. Mоskva: Nedra, 1976, 511 p.
4.   Zdanovich V. G., Belolikov A. I., Gusev N. A., Zvonarev K. A. Vysshaya geodeziya. Moskva: Nedra, 1970, 512 p.
5.   Kushtin I.F. Geodeziya. M.: PRIOR, 2001, 448 p.
6.   Makarov A.P. (2014) The investigation of the scale formula in Gauss - Krueger projetion for 12-grade coordinate zones. Geodezia i Kartografia, (9), pp. 2-4. (In Russian). DOI: 10.22389/0016-7126-2014-891-9-2-4.
7.   Medvedev P.A., Novgorodskaya M.V. (2017) Mathematical models’ analysis of rectangular coordinates’calculation in the expanded zones of Gauss Kruger conformal projection. Geodezia i Kartografia, (3), pp. 14-19. (In Russian). DOI: 10.22389/0016-7126-2017-921-3-14-19.
8.   Medvedev P.A., Novgorodskaya M.V. (2017) Development of mathematical model Gauss – Kruger coordinate system for calculating planimetric rectangular coordinates using geodesic coordinates. Geodezia i Kartografia, 78(8), pp. 10-19. (In Russian). DOI: 10.22389/0016-7126-2017-926-8-10-19.
9.   Morozov V.P. Kurs sferoidicheskoj geodezii. Izd. 2-e, pererab. i dop. M.: Nedra, 1979, 295 p.
10.   Uraev N. A. Sferoidicheskaya geodeziya. М.: VTS, 1955, 168 p.
11.   Haimov Z. S. Osnovy vysshej geodezii. Uchebnik dlya vuzov. Pod redakciej M. M. Mashimova. Moskva: Nedra, 1984, 360 p.
12.   Hristov V.K. Koordinaty Gaussa – Kryugera na ehllipsoide vrashcheniya. M.: Geodezizdat, 1957, 264 p.
13.   Kruger L. (1912) Konforme Abbildung des Erdellipsoids in der Ebene. Veroff des Preus. Geod. Jnst., N. F., 52, Potsdam. 172 p.
Citation:
Medvedev P.A., 
Novgorodskaya M.V., 
(2018) Mathematical models of Gauss – Kruger projection for calculation of meridians conversion on the plane and scale of the image. Geodesy and cartography = Geodezia i Kartografia, 79(4), pp. 2-7. (In Russian). DOI: 10.22389/0016-7126-2018-934-4-2-7
Publication History
Received: 31.01.2018
Accepted: 19.03.2018
Published: 20.05.2018

Content

2018 April DOI:
10.22389/0016-7126-2018-934-4