UDC: 
DOI: 
10.22389/0016-7126-2018-934-4-23-30
1 Istomina E.A.
2 Ovchinnikova E.V.
Year: 
№: 
934
Pages: 
23-30

Sochava Institute of Geography SB RAS

1, 
2, 
Abstract:
A method of typological mapping of landscapes with the use of Landsat satellite images and the digital elevation model SRTM, as well as the method of factorial-dynamic classification of landscapes, was developed and a large-scale landscape map of the Mondy basin was created. At the first stage, the image was automatically classified using the neural network classification method, resulting in a picture divided into 11 classes. The resulting classified image was smoothed to remove the mosaic effect and translated into a vector map. For each unit obtained as a result of the classification of the satellite image, the following parameters were calculated by means of spatial analysis in the GIS: belonging to a particular ridge, category according to the classification of the image, height category, slopes and topographic wetness index. By the combination of these parameters, each unit was assigned to a certain type of landscapes. In the study area on the Tunkinsky goltsy ridge goltsovy steep slope screes with lichen cover landscapes, as well as birch and larch-birch stages of restoration of larch forests are dominated, and on the Khamar-Daban ridge – larch moss and dwarf birch forests, as well as meadows with the community of dwarf birch.
The work was carried out within the framework of the program of the V. B. Sochava Institute of Geography SB RAS with partial support of the Russian Foundation for Basic Research (projects No. 17-05-00588 and No. 16-05-00902)
References: 
1.   Atutova Zh. V. Rol’ prirodopol’zovanija v preobrazovanii geosistem Tunkinskoj kotloviny v konce XVII – nachale XX vekov. Geografi ja i prirodnye resursy, 2009, no. 3, pp. 124–129.
2.   Belousov V. M., Bude I. Yu., Radziminovich Ya. B. Fiziko-geografi cheskaja harakteristika i problemy jekologii jugo-zapadnoj vetvi Bajkal’skoj riftovoj zony: Uchebnoe posobie. Irkutsk: Izdatel’stvo Irkutskogo universiteta, 2000, 160 p.
3.   Vasilenko O. V., Voropaj N. N. Osobennosti formirovanija klimata kotlovin Jugo-Zapadnogo Pribajkal’ja. Izvestija RAN. Serija geograficheskaja, 2015, no. 2, pp. 98–104.
4.   Vasilenko O. V., Istomina E. A., Voropaj N. N. Kartografi rovanie polja temperatury vozduha Tunkinskoj kotloviny na landshaftnojosnove. Geografi ja i prirodnye resursy, 2017, no. 2, pp. 182–189.
5.   Vyrkin V. B., Kuz’min V. A., Snytko V. A. Obshhnost’ i razlichija nekotoryh chert prirody Tunkinskoj vetvi kotlovin. Geografi ja i prirodnye resursy, 1991, no. 4, pp. 61–68.
6.   Krauklis A.A. Problemy ehksperimental'nogo landshaftovedeniya. Novosibirsk: Nauka, 1979, 233 p.
7.   Konovalova T.I. , Bessolicyna E.P., Vladimirov I.N., i dr. Landshaftno-interpretacionnoe kartografirovanie. Otv. red. A. K. Cherkashin. Novosibirsk: Nauka, 2005, 424 p.
8.   Landshafty yuga Vostochnoj Sibiri [Karty]: [fizicheskaya karta]. Avt. V.S. Miheev, V.A. Ryashin, 1 : 1500 000. M.: izd. GUGK, 1977, 4 p.
9.   Sochava V.B. Vvedenie v uchenie o geosistemah. Novosibirsk: Nauka, 1978, 320 p.
10.   Cherkashina A. A., Golubcov V. A. Struktura pochvennogo pokrova Tunkinskoj kotloviny. Geografi ja i prirodnye resursy, 2016, no. 3, pp. 130–140.
11.   Blaschke T. (2010) Object Based Image Analysis for Remote Sensing. ISPRS Journal of Photogrammetry and Remote Sensing, Volume 1, no. 65 , pp. 2–16.
12.   Costaa H., Carraoa H., Bacaod F., Caetanoa M. (2014) Combining per-pixel and object-based classifications for mapping land cover over large areas. International Journal of Remote Sensing, Volume 35, no. 2, pp. 738–753.
13.   Li L., Chen Y., Xu T., Liu R., Huang C. (2015) Super-resolution mapping of wetland inundation from remote sensing imagery based on integration of back-propagation neural network and genetic algorithm. Remote Sensing of Environment, no. 164, pp. 142–154.
14.   Zhang C., Xie Z. (2012) Combining object-based texture measures with a neural network for vegetation mapping in the Everglades from hyperspectral imagery. Remote Sensing of Environment, no. 124, pp. 310–318.
Citation:
Istomina E.A., 
Ovchinnikova E.V., 
(2018) Geoinformation carthography of the landscapes of the Mondy depression. Geodesy and cartography = Geodezia i Kartografia, 79(4), pp. 23-30. (In Russian). DOI: 10.22389/0016-7126-2018-934-4-23-30
Publication History
Received: 25.01.2018
Accepted: 19.03.2018
Published: 20.05.2018

Content

2018 April DOI:
10.22389/0016-7126-2018-934-4

QR-code page

QR-код страницы