UDC: 
DOI: 
10.22389/0016-7126-2018-939-9-30-36
1 Beregovoi D.V.
2 Mustafin M.G.
Year: 
№: 
939
Pages: 
30-36

Saint-Petersburg Mining University

1, 
2, 
Abstract:
The authors show an automated method for performing the main stages of creating a topographic plan. The optimal number and location of the reference points for creation a digital terrain model using drones is determined. The necessary components of a multi-rotor helicopter are described. They are required for lifting the camera into the air and increasing the duration of the flight. On the basis of the research, a significant speed increase of the field work was achieved using effective satellite and linear-angular measurements for determination of the reference points’ coordinates and productive survey from anunmanned aerial vehicle. Algorithms forconstructing an orthophoto and a digital terrain model as well as automated filtering of the resulting dense point cloud for creating a digital surface model are presented. The high-accurate modification of the OBIA (Object-Based Image Analysis) algorithm for classification of ground objects is determined. At the end of the article, the algorithm for automated vectorization of the raster classification using the ArcGIS geoinformation software and converting of the received objects to convention for creating an electronic topographic plan is given.
References: 
1.   Beregovoj D. V. Avtomatizirovannoe deshifrirovanie i vektorizatsiya materialov ajerofotos#jomki pri sozdanii topograficheskogo plana. Sb. statej XV Mezhdunarodnoj nauchno-prakticheskoj konferentsii EurasiaScience. Ch. I., Moskva: Aktual'nost', 2018, pp. 220–222.
2.   Beregovoj D. V. Nesovershenstvo metoda postroeniya tsifrovyh trjohmernyh modelej mestnosti na osnove tsifrovyh izobrazhenij. Sb. trudov XII Vserossijskoj nauchno-prakticheskoj konferentsii «Novye tehnologii pri nedropol'zovanii», SPb, 2016, pp. 38–39.
3.   Vinogradov A. V. Avtomatizatsiya topograficheskih s#jomok: Metodicheskie ukazaniya k laboratornym rabotam. Omsk: Sibirskaya gosudarstvennaya avtomobil'no-dorozhnaya akademiya, 2016, 19 p.
4.   Kornilov Ju. N. Fotogrammetriya: Laboratornyj praktikum. SPb.: Sankt-Peterburgskij gornyj institut, 2006, 172 p.
5.   Labutina I. A. Deshifrirovanie ajerokosmicheskih snimkov: Ucheb. posobie dlya studentov vuzov. Moskva: Aspekt Press, 2004, 184 p.
6.   Pavlov V.I. Fotogrammetriya. Teoriya odinochnogo snimka i stereoskopicheskoj pary snimkov. Spb., 2006, 176 p.
7.   Sverdlov S. Z. Prodolzhitel'nost' poljota jelektricheskogo bespilotnogo vertoljota. Vestnik Vologodskogo gosudarstvennogo universiteta, 2015, no. 1 (5), pp. 11–16.
8.   Solem Ya. Je. Programmirovanie komp'juternogo zreniya na yazyke Python. Per. s angl. A. A. Slinkina. Moskva: DMK Press, 2016, 312 p.
9.   Uslovnye znaki dlya topograficheskih planov masshtabov 1:5000, 1:2000, 1:1000, 1:500. Glavnoe upravlenie geodezii i kartografii pri Sovete Ministrov SSSR. Moskva: Nedra, 1989, 286 p.
10.   Chandra A. M., Gosh S. K. Distantsionnoe zondirovanie i geograficheskie informatsionnye sistemy. Per. s angl. A. V. Kirjushina. Moskva: Tehnosfera, 2008, 308 p.
11.   Johnson A. (2014) Plane and geodetic surveying. 2nd ed. CRC Press. pp. 79–99.
12.   Kummel E. (2000) Parc Agricole – Landschaftsraum Kronsberg am Stadtrand von Hannover. Anthos, no. 4, pp. 56–59.
13.   Landis J. R., Koch G. G. (1977) The measurement of observer agreement for categorical data. Biometrics, no. 33, pp. 159–174.
14.   Mikrut S. (2010) Sieci neuronowe w procesach dopasowania zdjęć lotniczych. Wydawnictwo AGH, Kraków, pp. 30–41.
Citation:
Beregovoi D.V., 
Mustafin M.G., 
(2018) Automated method of а topographic plan creation based on survey from a drone. Geodesy and cartography = Geodezia i Kartografia, 79(9), pp. 30-36. (In Russian). DOI: 10.22389/0016-7126-2018-939-9-30-36
Publication History
Received: 26.06.2018
Accepted: 31.08.2018
Published: 20.10.2018

Content

2018 September DOI:
10.22389/0016-7126-2018-939-9