1 Sokolov S.V.
2 Rosenberg I.N.
3 Baуаndurovа А.А.

Rostov State Transportation University


Russian University of Transportation

The method of increasing the accuracy of object positioning by analytical three-dimensional projection of coordinates of its current location, determined by the measurements of the satellite navigation measurements, on the corresponding trajectory orthodromic segment of true movement is considered. This method significantly reduces the computational cost and time to determine the location of the object. The results of the numerical simulation of the procedure for determining the coordinates of the object on the orthodromic trajectory on noisy satellite navigation measurements, which indicate the possibility of effective use of the proposed approach, are given. The method described in the article with the obtained accuracy is proposed to be used in railway and road transport. For example, it will help to increase the accuracy of positioning of high-speed trains moving along fairly long orthodromic trajectories, and without large financial costs, since all the necessary devices are already included in the measuring and piloting complex of locomotives.
The work was performed under state assignment No 1.11772.2018/11.12.
1.   GLONASS. Printsipy postroeniya i funktsionirovaniya. Pod red. A. I. Perova, V. N. Harisova. – Izd. 4-e, pererab. i dop. Moskva: Radiotehnika, 2010, 800 p.
2.   Sokolov S. V. Analiticheskie modeli prostranstvennyh traektorij dlya resheniya zadach navigatsii. Prikladnaya matematika i mehanika, 2015, Vol. 79, 1. pp. 24–30.
3.   Shherban’ I. V., Shherban’ O. G., Konev D. S. Metod slabosvjazannoj integracii sputnikovoj i mikrojelektromehanicheskoj inercial’noj navigacionnyh sistem transportnogo sredstva. Mehatronika, Avtomatizacija, Upravlenie, 2015, Vol. 16, no. 2, pp. 133-139.
4.   Chen C. L., Liu P. F., Gong W. T. (2014) A Simple Approach to Great Circle Sailing: The COFI Method. The Journal of Navigation, no. 67, pp. 403–418. DOI: 10.1515/pomr-2017-0002.
5.   Chen C. L. (2016) A systematic approach for solving the great circle track problems based on vector algebra, Polish Maritime Research. no. 2, pp. 3–13. DOI: 10.1515/pomr-2016-0014.
6.   Kifana B. D., Abdurohman M. (2012) Great Circle Distance Methode for Improving Operational Control System Based on GPS Tracking System. International Journal on Computer Science and Engineering, no. 4, pp. 647–662.
7.   Nastro V., Tancredi U. (2010) Great Circle Navigation with Vectorial Methods. The Journal of Navigation, no. 3, pp. 557–563. DOI: 10.1017/S0373463310000044.
8.   Tseng W. K., Lee H. S. (2007) The vector function for distance travelled in great circle navigation. The Journal of Navigation, no. 1, pp. 164–170. DOI: 10.1017/S0373463307214122.
Sokolov S.V., 
Rosenberg I.N., 
Baуаndurovа А.А., 
(2018) High-precision positioning on the orthodromic trajectory by satellite measurements. Geodesy and cartography = Geodezia i Kartografia, 79(9), pp. 37-44. (In Russian). DOI: 10.22389/0016-7126-2018-939-9-37-44
Publication History
Received: 24.04.2018
Accepted: 30.08.2018
Published: 20.10.2018


2018 September DOI:

QR-code page

QR-код страницы