UDC: 
DOI: 
10.22389/0016-7126-2019-943-1-94-101
1 Entin A.L.
2 Samsonov T.E.
3 Lurie I.K.
Year: 
№: 
943
Pages: 
94-101

Lomonosov Moscow State University (MSU)

1, 
2, 
3, 
Abstract:
The development of digital elevation models (DEM) and methods of its analysis expanded its application in various geographical researches, and for hydrological modeling in particular. In this paper we present a procedure of harmonizing DEM and hydrographic network for automated basin delineation at a small scale. It is shown that the harmonization procedure is a necessary step of hydrological modeling, the requirements to the harmonization procedure are defined, as well as minimum data set needed for reliable harmonization. This data set includes: water courses (linear objects), water bodies (polygonal objects), marks in endorheic basins (point objects). A special harmonization procedure is proposed; this procedure includes DEM elevation decreasing along hydrographic objects, creating artificial DEM edges and closed local depression removing. The proposed procedure was used to harmonize GMTED2010 data with the vector hydrographic network from VSEGEI basemaps. The applicability of matching procedure was evaluated through basin delineation and further visual comparison with elevation, hydrographic objects, and HydroBASINS data. Visual examination shows high reliability of the computation result (more than 90 % basins are delineated correctly), which allows us to conclude that the matching technique is suitable for low-resolution DEMs.
The study was supported by the grant of the Russian geographical society № 21/2016-P, updated and clarified under RFBR grant № 17-05-41030 RGO_а.
References: 
1.   Ermolaev O. P., Mal'tsev K. A., Muharamova S. S., Harchenko S. V., Vedeneeva E. A. Kartograficheskaya model' rechnyh bassejnov Evropejskoj Rossii. Geografiya i prirodnye resursy, 2017, no. 2, pp. 27–36. DOI: 10.21782/GiPR0206-1619-2017-2(27-36).
2.   Mal'tsev K. A., Ermolaev O. P. Ispol'zovanie tsifrovyh modelej rel'efa dlya avtomatizirovannogo postroeniya granits vodosborov. Geomorfologiya, 2014, no. 1, pp. 45–52. DOI: 10.15356/0435-4281-2014-1-45-52.
3.   Tsifrovye geograficheskie osnovy. URL: http://www.vsegei.com/ru/info/topo/ (accessed: 27.02.2018).
4.   Danielson J. J., Gesch D. B. (2011) Global multiresolution terrain elevation data 2010 (GMTED2010). U.S. Geological Survey Open-File Report 2011–1073. Reston, Virginia. 26 p.
5.   De Jager A. L., Vogt J. V. (2010) Development and demonstration of a structured hydrological feature coding system for Europe. Hydrological Sciences Journal, Volume 55, no. 5 , pp. 661–675. DOI: 10.1080/02626667.2010.490786.
6.   GTOPO30 Documentation. URL: https://webgis.wr.usgs.gov/globalgis/gtopo30/gtopo30.htm (accessed: 10.05.2018).
7.   Jenson S. K., Domingue J. O. (1988) Extracting Topographic Structure from Digital Elevation Data for Geographic Information System Analysis. Photogrammetric Engineering and Remote Sensing, Volume 54, no. 11 , pp. 1593–1600.
8.   Lehner B., Grill G. (2013) Global river hydrography and network routing: Baseline data and new approaches to study the world’s large river systems. Hydrological Processes, Volume 27, no. 15 , pp. 2171–2186.
9.   Lehner B., Verdin K., Jarvis A. (2013) HydroSHEDS. Technical Documentation. Version 1.2. July 2013. Conservation Science Program World Wildlife Fund, US Washington, DC 20037. 25 p.
10.   Lehner B., Verdin K., Jarvis A. (2008) New global hydrography derived from spaceborne elevation data. Eos. Transactions American Geophysical Union. Volume 89, no. 10 , pp. 93–94. DOI: 10.1029/2008EO100001.
11.   Lindsay J. B. (2016) The practice of DEM stream burning revisited. Earth Surface Processes and Landforms, Volume 41, no. 5 , pp. 658–668. DOI: 10.1002/esp.3888.
12.   Lindsay J. B., Dhun K. (2015) Modelling surface drainage patterns in altered landscapes using LiDAR. International Journal of Geographical Information Science, Volume 29, no. 3 , pp. 397–411. DOI: 10.1080/13658816.2014.975715.
13.   O’Callaghan J. F., Mark D. M. (1984) The extraction of drainage networks from digital elevation data. Computer vision, graphics, and image processing, Volume 28, no. 3 , pp. 323–344.
14.   Poppenga S. K., Worstell B. B. (2008) Elevation-derived watershed basins and characteristics for major rivers of the conterminous United States: U.S. Geological Survey Scientific Investigations Report 2008–5153. 29 p. DOI: 10.3133/sir20085153.
15.   USGS EROS Archive – Digital Elevation – HYDRO1K. URL: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-hydro1k (accessed: 10.05.2018).
Citation:
Entin A.L., 
Samsonov T.E., 
Lurie I.K., 
(2019) Harmonization of digital elevation models and hydrographic network for basin delineation. Geodesy and cartography = Geodezia i Kartografia, 80(1), pp. 94-101. (In Russian). DOI: 10.22389/0016-7126-2019-943-1-94-101
Publication History
Received: 27.07.2018
Accepted: 05.10.2018
Published: 20.02.2019

Content

2019 January DOI:
10.22389/0016-7126-2019-943-1