DOI: 
10.22389/0016-7126-2022-988-10-53-61
1 Boyarchuk M.A.
2 Zhurkin I.G.
3 Nepoklonov V.B.
4 Orlov P.Yu.
Year: 
№: 
988
Pages: 
53-61

Moscow State University of Geodesy and Cartography (MIIGAiK)

1, 
2, 
3, 
4, 
Abstract:
Information on the movements and stress-strain state of the Earth`s surface and crust is necessary to predict catastrophic geodynamic processes, such as earthquakes, volcanic eruptions, landslides, glacier collapses, karst sinkholes and subsidence of soils in mining areas. The authors summarize the existing experience of applying geoinformation technologies for modeling Earth’s surface deformations; reveal the shortcomings of current software solutions and the approach to their joint use for analyzing these processes. The relevance of using spatial data infrastructure as a source of data on Earth`s surface deformations is noted. Solutions for improvement of Earth`s surface deformations imaging with the help of the three-dimensional vector fields visualization method, presented by the authors in previous surveys, as well as the results of visualization of the Earth`s surface displacements model, demonstrating applicability and operability of the method developed by the authors, are offered. The requirements and the general functional layout of the thematic geographic information system intended for geoinformation modeling of the Earth`s surface deformations and administrative tasks solution are formed.
The research was carried out within the state assignment No. 0708-2020-0001 of the Ministry of Science and Higher Education of the Russian Federation.
References: 
1.   Boyarchuk M. A., Zhurkin I. G., Uchaev D. V., Uchaev D. V. Dvumernaya vizualizatsiya trekhmernykh geofizicheskikh polei v zadachakh geoinformatsionnogo modelirovaniya. Izvestia vuzov. Geodesy and Aerophotosurveying, 2019, Vol. 63, no. 6, pp. 718–728. DOI: 10.30533/0536-101X-2019-63-6-718-728.
2.   Kuz'min Yu. O. Sovremennaya geodinamika: ot dvizhenii zemnoi kory do monitoringa otvetstvennykh ob"ektov. Fizika Zemli, 2019, no. 1, pp. 78–103. DOI: 10.31857/S0002-33372019178-103.
3.   Mazurov B. T. Geodinamicheskie sistemy (kinematicheskie i deformatsionnye modeli blokovykh dvizhenii). Vestnik SSUGT, 2016, no. 3 (35), pp. 5–16.
4.   Pisarenko M. V. Prognoz ozhidaemykh sdvizhenii i deformatsii zemnoi poverkhnosti s pomoshch'yu GIS tekhnologii. Gornyi informatsionno-analiticheskii byulleten', 2009, no. 12, pp. 310–315.
5.   Sycheva N. A., Bogomolov L. M., Yunga S. L. Geoinformatika v statisticheskom podkhode k raschetam seismotektonicheskikh deformatsii. Geoinformatika, 2009, Vol. 16, no. 1, pp. 33–43.
6.   Sharoglazova G. A., Dolgii P. S. Mnogodistsiplinarnyi podkhod k modelirovaniyu geodinamicheskikh protsessov. Vestnik Polotskogo gosudarstvennogo universiteta. Ser. F. Stroitel'stvo. Prikladnye nauki, 2018, no. 8, pp. 179–183.
7.   Blachowski J., Milczarek W., Stefaniak P. (2014) Deformation information system for facilitating studies of mining-ground deformations, development, and applications. Natural Hazards and Earth Systems Sciences, Volume 14, no. 7, pp. 1677–1689. DOI: 10.5194/nhess-14-1677-2014.
8.   Cignetti M., Guenzi D., Ardizzone F., Allasia P., Giordan D. (2020) An Open-Source Web Platform to Share Multisource, Multisensor Geospatial Data and Measurements of Ground Deformation in Mountain Areas. ISPRS International Journal of Geo-Information, Volume 9, no. 1, pp. 1–19. DOI: 10.3390/ijgi9010004.
9.   Kilsedar C. E., Brovelli M. A. (2020) Multidimensional Visualization and Processing of Big Open Urban Geospatial Data on the Web. ISPRS International Journal of Geo-Information, Volume 9, no. 7, pp. 1–25. DOI: 10.3390/ijgi9070434.
10.   Lobatskaya R. M., Strelchenko I. P. (2016) GIS-based analysis of fault patterns in urban areas: A case study of Irkutsk city, Russia. Geoscience Frontiers, Volume 7, no. 2, pp. 287–294. DOI: 10.1016/j.gsf.2015.07.004.
11.   Samsonov S., Baryakh A. (2020) Estimation of Deformation Intensity above a Flooded Potash Mine Near Berezniki (Perm Krai, Russia) with SAR Interferometry. Remote Sensing, Volume 12, no. 19, pp. 1–11. DOI: 10.3390/rs12193215.
12.   Toma-Danila D., Cioflan C., Armas I. (2017) GIS in seismology: contributions to the evaluation of seismic hazard and risk. GeoPatterns, Volume 2, no. 2, pp. 10–16.
13.   Vatseva R., Solakov D., Tcherkezova E., Simeonova S., Trifonova P. (2013) Applying GIS in Seismic Hazard Assessment and Data Integration for Disaster Management. Intelligent Systems for Crisis Management. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg, pp. 171–183. DOI: 10.1007/978-3-642-33218-0_13.
Citation:
Boyarchuk M.A., 
Zhurkin I.G., 
Nepoklonov V.B., 
Orlov P.Yu., 
(2022) Geoinformational technologies analysis for studying the visualization of the Earth`s surface vertical and horizontal deformations. Geodesy and cartography = Geodezia i Kartografia, 83(10), pp. 53-61. (In Russian). DOI: 10.22389/0016-7126-2022-988-10-53-61