UDC: 
DOI: 
10.22389/0016-7126-2022-982-4-39-50
1 Skrypitsyna T.N.
Year: 
№: 
982
Pages: 
39-50

Moscow State University of Geodesy and Cartography (MIIGAiK)

1, 
Abstract:
The shelf and outlet glaciers fluctuation characteristics are classically performed by comparing multi-temporal mapping sources, geophysical and remote sensing methods. The unmanned aerial vehicles (UAVs) usage equipped with GNSS receivers and digital photographic cameras enables obtaining georeferenced information and images. This data can be successfully employed for characterizing the movement of the glacier. The author proposes a modified pseudo-parallax method, which uses the multi-temporal survey materials obtained from the UAVs to determine the spatial displacements of the glacier surface. Its efficiency is demonstrated on the movement pattern determination example of the Dålk Glacier (North Antarctica) in the period from January, 20 to February, 9, 2017. Through that we can determine the total displacement vector on a point by three coordinates, they are measured by pseudo-stereopair obtained from different-time orthophotomaps and DEM. Modern automated techniques for identifying the corresponding points on a pair of images allow obtaining a sufficiently dense measurement network with predictable accuracy and precision. The investigation made it possible to determine the glacier displacement in 10 days and the distribution nature of these offsets without ground-based geodetic measurements. The average drift was 6,28 m, with a scatter from 0,07 m to 10,8 m. A method for estimating the shifts without ground control measurements was proposed and the main sources of systematic and random errors in coordinates and points heights determination were described.
The author would like to thank D. P. Blyakharsky for the material provided for his research.
References: 
1.   Blyakharskii D. P., Volgusheva N. E., Kazakov E. E. Monitoring lednikov v sezon ablyatsii s ispol’zovaniem bespilotnykh aerofotos”emochnykh sistem na primere lednikov Potanina i Aleksandry (massiv Tabyn-Bogdo-Ola, Mongoliya). Izvestiya Vuzov Geodesy and aerophotosurveying, 2019, Vol. 63, no. 2, pp. 168‒179. DOI: 10.30533/0536-101X-2019-63-2-168-179.
2.   Drugov M. D., Tutubalina O. V., Krylenko V. V. Otsenka izmenenii rel'efa beregovoi zony po dannym vozdushnogo lazernogo skanirovaniya i s"emok s bespilotnykh letatel'nykh apparatov (na primere Anapskoi peresypi). Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, no. 2, pp. 115 – 127. DOI: 10.21046/2070-7401-2021-18-2-115-127.
3.   Zhidkov V. A., Zakharov V. G. Rezul'taty monitoringa pul'siruyushchego lednika Frit'of (o. Zapadnyi Shpitsbergen) za period s 1996 po 2006 gg. Kompleksnye issledovaniya prirody Shpitsbergena, Moskva: Geos, 2009, 9. pp. 256 – 265.
4.   Zakharov V. G. Dinamika lednika Dolk i gidrometeorologicheskie usloviya v zalive Pryuds (Vostochnaya Antarktida) v 1989/1990 i 1994 gg. Materialy glyatsiologicheskikh issledovanii, 2002, 93. pp. 169–180.
5.   Zakharov V. G. Kolebaniya lednikov Antarktidy. Moskva: Akkorinformizdat, 1994, 128 p.
6.   Kadnichanskii S. A. Obosnovanie trebovanii k tsifrovoi modeli rel'efa dlya ortofototransformirovaniya aero- i kosmicheskikh snimkov. Izvestia vuzov Geodesy and aerophotosurveying, 2010, no. 5, pp. 49–54.
7.   Knizhnikov Yu. F. Issledovaniya dvizheniya l'da gornykh lednikov stereofotogrammetricheskim metodom. Moskva: Nauka, 1973, 120 p.
8.   Markov A. N., Dahl-Jensen D., Kotlyakov V. M., Golubev V. N., Leonov M. G., Lukin V. V Dinamika pokrovnykh lednikov Antarktidy i Grenlandii po rezul’tatam skvazhinnykh, radiolokatsionnykh i kosmicheskikh nablyudenii. Led i Sneg, 2016, Vol. 56, no. 3, pp. 309–332. DOI: 10.15356/2076-6734-2016-3-309-332.
9.   Skrypitsyna T. N., Zakharov V. G ., Kiseleva A. S., Blyakharskii D. P., Tsyao G., Yuan’ S., Florinskii I. V. Evolyutsiya rel’efa vyvodnogo lednika Dolk (zaliv Pryuds, Vostochnaya Antarktida) po dannym bespilotnykh aerofotos” emok 2017–2019 godov. Izvestiya Vuzov Geodesy and aerophotosurveying, 2021, Vol. 65, no. 5, pp. 517‒528. DOI: 10.30533/0536-101X-2021-65-4-517-528.
10.   Bliakharskii D. P., Florinsky I. V., Skrypitsyna T. N. (2019) Modelling glacier topography in Antarctica using unmanned aerial survey: assessment of opportunities. International Journal of Remote Sensing, no. 40 (7), pp. 2517–2541. DOI: 10.1080/01431161.2019.1584926.
11.   Florinsky I. V. (2016) Digital Terrain Analysis in Soil Science and Geology. 2nd ed. Amsterdam: Elsevier Academic Press. 486 p.
12.   Florinsky I. V., Kurkov V. M., Bliakharskii D. P. (2018) Geomorphometry from Unmanned Aerial Surveys. Transactions in GIS, no. 22 (1), pp. 58–81. DOI: 10.1111/tgis.12296.
13.   Hengl T. (2006) Finding the right pixel size. Computers and Geosciences, no. 32 (9), pp. 1283–1298. DOI: 10.1016/j.cageo.2005.11.008.
14.   Kraaijenbrink P., Meijer S., Shea J., Pellicciotti F., Jong S. D., Immerzeel W. (2016) Seasonal surface velocities of a Himalayan glacier derived by automated correlation of unmanned aerial vehicle imagery. Annals of Glaciology, no. 57 (71), pp. 103–113. DOI: 10.3189/2016AoG71A072.
15.   Kurkov V. M., Kiseleva A. S. (2020) DEM accuracy research based on unmanned aerial survey data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, no. XLIII-B3-2020, pp. 1347–1352. DOI: 10.5194/isprs-archives-XLIII-B3-2020-1347-2020.
16.   Li R., Ye W., Qiao G., Tong X., Liu S., Kong F., Ma X. (2017) A new analytical method for estimating antarctic ice flow in the 1960s from historical optical satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, no. 55 (5), pp. 2771–2785. DOI: 10.1109/TGRS.2017.2654484.
17.   Li T., Zhang B., Xiao W., Cheng X., Li Z., Zhao J. (2020) UAV-Based Photogrammetry and LiDAR for the Characterization of Ice Morphology Evolution. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, no. 13, pp. 4188–4199. DOI: 10.1109/JSTARS.2020.3010069.
Citation:
Skrypitsyna T.N., 
(2022) Determination of glacier surface displacements through multi-temporal UAV data. Geodesy and cartography = Geodezia i Kartografia, 83(4), pp. 39-50. (In Russian). DOI: 10.22389/0016-7126-2022-982-4-39-50
Publication History
Received: 18.01.2022
Accepted: 07.04.2022
Published: 20.05.2022

Content

2022 April DOI:
10.22389/0016-7126-2022-982-4

QR-code page

QR-код страницы