UDC: 
DOI: 
10.22389/0016-7126-2022-984-6-21-29
1 Shevshenko G.G.
2 Bryn M.Ya.
3 Naumova N.A.
Year: 
№: 
984
Pages: 
21-29

Kuban State Technological University

1, 
3, 

Petersburg State Transport University

2, 
Abstract:
The theoretical substantiation of matrix inversion by the search method of nonlinear programming is given for equalizing and evaluating the accuracy of geodetic networks’ elements. A theorem on the uniqueness of the extremum point and its corollary (also a remark to the latter) are formulated and proved with minimizing the objective function by the search method at performing matrix inversion. A step-by-step algorithm for matrix conversion by the search method was compiled. The approbation of the developed algorithm was carried out when equalizing and evaluating the geodetic network elements’ accuracy, taking into account the errors of the source data. The correctness of the proposed solutions is confirmed by coinciding the covariance matrix of measurement errors results reversal and that of unknowns’ coefficients normal equations with the calculations performed by the MOBR function in Microsoft Excel, as well as the coincidence of the equalization results and evaluation of the geodetic network’s elements accuracy by the search method with similar calculations by parametric method in the NW program by Prof. V. A. Kougiya.
References: 
1.   Arkhipenkov S. M. Iteratsionnyi metod obrashcheniya matrits. Vestnik TGTU, 2003, Vol. 9, no. 3, pp. 532–536.
2.   Barliani A. G. Analiz mezhotraslevykh ekonomiko-matematicheskikh modelei s primeneniem matrichnogo tozhdestva Shermana – Morrisona. Vestnik Sibirskoi gosudarstvennoi geodezicheskoi akademii, 2001, no. 6, pp. 185–190.
3.   Barliani A. G. Modifitsirovannyi algoritm Tikhonova dlya resheniya vyrozhdennykh sistem uravnenii. Interekspo Geo-Sibir', 2010, Vol. 1, no. 1, pp. 120–122.
4.   Verzhbitskii V. M. Iteratsionnye metody s posledovatel'noi approksimatsiei obratnykh operatorov. Izvestiya instituta matematiki i informatiki, 2006, no. 2 (36), pp. 129–138.
5.   Verzhbitskii V. M. Osnovy chislennykh metodov: Uchebnik dlya vuzov. Moskva: Vysshaya shkola, 2002, 840 p.
6.   Voevodin V. V., Kuznetsov Yu. A. Matritsy i vychisleniya. Moskva: Nauka, 1984, 320 p.
7.   Gerasimenko M.D. (2022) Problems in solving ill-conditioned normal equations. Geodezia i Kartografia, 83(2), pp. 57-62. (In Russian). DOI: 10.22389/0016-7126-2022-980-2-57-62.
8.   Golubev V. V. Geodeziya. Teoriya matematicheskoi obrabotki geodezicheskikh izmerenii: uchebnik dlya vuzov. Moskva: Izdatel’stvo MIIGAiK, 2016, 422 p.
9.   Gordeev V.A. Teoriya oshibok izmerenii i uravnitel'nye vychisleniya. Uchebnoe posobie. 2-e izdanie, ispravlennoe i dopolnennoe. Ekaterinburg: Izdatel'stvo UGGU, 2004, 429 p.
10.   Kougiya V.A. Izbrannye trudy: Monografiya [Selected works: the monograph]. Под ред. М. Я. Брыня. SPb.: Peterburgskij gos. un-t putej soobshcheniya, 2012, 448 p.
11.   Kuksenko S. P., Gazizov T. R. Iteratsionnye metody resheniya sistemy lineinykh algebraicheskikh uravnenii s plotnoi matritsei. Tomsk: Tomskii gosudarstvennyi universitet, 2007, 208 p.
12.   Makarov G.V., Afanas'ev V.V., Afanas'ev V.V. (1981) Estimation of accuracy in search methods of equalization. Geodesy and cartography, 42(11), pp. 20–22.
13.   Markuze Ju. I. Obobshchennyj rekurrentnyj algoritm uravnivaniya svobodnyh i nesvobodnyh geodezicheskih setej s lokalizatsiej grubyh oshibok. Izvestia vuzov. Geodesy and Aerophotosurveying, 2000, no. 1, pp. 3–16.
14.   Markuze Yu. I., Golubev V. V. Teoriya matematicheskoi obrabotki geodezicheskikh izmerenii: Ucheb. posobie dlya vuzov. Moskva: Akademicheskii prospekt, 2020, 247 p.
15.   Markuze Yu.I., Le Anh Cuong, Tran Tien Rang (2016) The research of an initial matrix of the return scales of unknown at a recurrent way. Geodezia i Kartografia, (11), pp. 7–10. (In Russian). DOI: 10.22389/0016-7126-2016-917-11-7-10.
16.   Matematicheskie metody i modeli na EVM. Uchebno-metodicheskii kompleks dlya studentov spetsial'nosti 1-56 02 01 «Geodeziya». Sost. i obshch. red. V. I. Mitskevicha. Novopolotsk: PGU, 2007, 184 p.
17.   Mashimov M. M. Metody matematicheskoi obrabotki astronomo-geodezicheskikh izmerenii. Moskva: VIA, 1990, 510 p.
18.   Mostovskoi A. P. Chislennye metody i sistema Mathematica: Ucheb. Posobie. Murmansk, 2009, 249 p.
19.   Nedozhogin N. S., Kopysov S. P., Novikov A. K. Parallel'noe formirovanie predobuslovlivatelya, osnovannogo na approksimatsii obrashcheniya Shermana – Morrisona. Vychislitel'nye metody i programmirovanie, 2015, Vol. 16, 1. pp. 86–92.
20.   Nedozhogin N. S., Sarmakeeva A. S., Kopysov S. P. Vysokoproizvoditel'nyi algoritm Shermana – Morrisona obrashcheniya matrits na GPU. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Ser.: Vychislitel'naya matematika i informatika, 2014, Vol. 3, no. 2, pp. 101–108.
21.   Neiman Yu. M., Sugaipova L. S. O vychislitel'noi skheme metoda naimen'shikh kvadratov. Izvestia vuzov. Geodesy and Aerophotosurveying, 2019, Vol. 63, no. 1, pp. 21–31.
22.   Tikhonov A. N., Arsenin V. Ya. Metody resheniya nekorrektnykh zadach. – Izd. 2-e. Moskva: Nauka, 1979, 285 p.
23.   Tikhonov A. N., Bol'shakov V. D., Byvshev V. A., Il'inskii A. S., Neiman Yu. M. O variatsionnom metode regulyarizatsii pri uravnivanii svobodnykh geodezicheskikh setei. Izvestia vuzov. Geodesy and Aerophotosurveying, 1978, no. 3, pp. 3–10.
24.   Faddeev D. K., Faddeeva V. N. Vychislitel'nye metody lineinoi algebry. Izdanie 4-e, stereotipnoe. Sankt-Peterburg: Lan', 2009, 736 p.
25.   Khvorov S. A. Parallel'nyi algoritm obrashcheniya tselochislennoi matritsy: rezul'taty eksperimentov. Vestnik Tambovskogo universiteta. Seriya: Estestvennye i tekhnicheskie nauki, 2018, Vol. 23, no. 121, pp. 100–108.
26.   Khimmel'blau D. Prikladnoe nelineinoe programmirovanie. Per. I. M. Bykhovskoi i B. T. Vavilova. Moskva: Mir, 1975, 536 p.
27.   Shevshenko G.G. (2019) Using search methods for leveling and assessing the accuracy of elementary geodetic constructions. Geodezia i Kartografia, 80(10), pp. 10-20. (In Russian). DOI: 10.22389/0016-7126-2019-952-10-10-20.
28.   Bru R., Cerdán J., Marín J., Mas J. (2003) Preconditioning Sparse Nonsymmetric Linear Systems with the Sherman – Morrison Formula. SIAM Journal on Scientific Computing, no. 25 (2), pp. 701–715. DOI: 10.1137/S1064827502407524.
29.   Herzberger J., Petković L. (1990) Efficient iterative algorithms for bounding the inverse of a matrix. Computing, no. 44, pp. 237–244. DOI: 10.1007/BF02262219.
30.   Mehra R. K. (1969) Computation of the inverse Hessian matrix using conjugate gradient methods. Proceedings of the IEEE, no. 57, pp. 225–226. DOI: 10.1109/PROC.1969.6929.
31.   Sherman J., Morrison W. J. (1950) Adjustment of an Inverse Matrix Corresponding to a Change in One Element of a Given Matrix. The Annals of Mathematical Statistics, no. 21 (1), pp. 124–127. DOI: 10.1214/aoms/1177729893.
32.   Shevchenko G. G., Bryn M. Ya. (2019) Adjustments of correlated values by search method. IOP Conference Series: Materials Science and Engineering, no. 698 (4): 044019, DOI: 10.1088/1757-899X/698/4/044019.
Citation:
Shevshenko G.G., 
Bryn M.Ya., 
Naumova N.A., 
(2022) Inversion of matrix through the search method at equalizing geodetic networks. Geodesy and cartography = Geodezia i Kartografia, 83(6), pp. 21-29. (In Russian). DOI: 10.22389/0016-7126-2022-984-6-21-29
Publication History
Received: 22.11.2021
Accepted: 16.06.2022
Published: 20.07.2022

Content

2022 June DOI:
10.22389/0016-7126-2022-984-6