DOI: 
10.22389/0016-7126-2023-1001-11-18-30
1 Musikhin I.A.
2 Opritova O.A.
3 Taranenko S. V.
Year: 
№: 
1001
Pages: 
18-30

Siberian State University of Geosystems and Technologies

1, 
2, 
3, 
Abstract:
The results of the study on the spatial organization of the Novosibirsk region, as well as modeling and choice of optimal trajectories of its economic development using the technology of scenario-based analysis of the territory are presented. Based on the laws of mutual influence of spatial factors and main economic drivers of regional development, the best location of new links of production chains and infrastructure facilities are determined. The analysis of the spatial organization of the population distribution system, location of industrial, social and road transport infrastructure facilities in the Novosibirsk region is given. A number of investment and social scenarios of the regional economic development are simulated and evaluated. The work was carried out using GIS technology in combination with external software module and expert database. A variety of suitability maps for investment and social scenarios, infrastructure-secure areas, and best location of prospective production clusters/chains are generated. It is offered to use the described technology when planning regional economic development
The article was prepared during the implementation of the scientific grant of the Ministry of Education and Science of Russia No. 075-15-2020-804
References: 
1.   Dzhurka N. G. Testirovanie al'ternativnykh modelei regional'nogo ekonomicheskogo rosta: grani vozmozhnogo (o knige A. G. Isaeva «Ekonomicheskii rost rossiiskikh regionov: ekzogennye i endogennye istochniki»). Prostranstvennaya ekonomika, 2022, no. 18 (1), pp. 168–183. DOI: 10.14530/se.2022.1.168-183.
2.   Karpik A. P., Lisitskii D. V., Osipov A. G., Savinykh V. N. Geokognitivnye metody obespecheniya analiza i prognozirovaniya sotsial'no-ekonomicheskogo razvitiya territorii. InterKarto. InterGIS, 2021, Vol. 27, no. 2, pp. 128–140. DOI: 10.35595/2414-9179-2021-2-27-128-140.
3.   Kuznetsova O. V. Strategiya prostranstvennogo razvitiya Rossiiskoi Federatsii: illyuziya reshenii i real'nost' problem. Prostranstvennaya ekonomika, 2019, no. 15 (4), pp. 107–125. DOI: 10.14530/se.2019.4.107-125.
4.   Patsala S. V., Goroshko N. V. Novosibirskaya oblast' v khozyaistve Rossii: dobyvayushchaya promyshlennost'. Vestnik PNIPU. Sotsial'no-ekonomicheskie nauki, 2021, no. 3, pp. 197–212. DOI: 10.15593/2224-9354/2021.3.23.
5.   Rastorguev I. A., Shchepetina T. D., Balanin A. L. Primenenie geoinformatsionnoi sistemy dlya otsenki infrastrukturnoi dostupnosti regionov s pozitsii osvoeniya i razvitiya. Informatsionnye i matematicheskie tekhnologii v nauke i upravlenii, 2021, no. 3 (23), pp. 40–48. DOI: 10.38028/ESI.2021.23.3.004.
6.   Aburas M. M., Ho Y. M., Ramli M. F., Ash`aari Z. H. (2016) The simulation and prediction of spatiotemporal urban growth trends using cellular automata models: A review. International Journal of Applied Earth Observation and Geoinformation, no. 52, pp. 380–389. DOI: 10.1016/j.jag.2016.07.007.
7.   Avin U., Goodspeed R. (2020) Using exploratory scenarios in planning practice: A spectrum of approaches. Journal of the American Planning Association, no. 86 (4), pp. 403–416. DOI: 10.1080/01944363.2020.1746688.
8.   Bateman I.J., Lovett A.A., Brainard J.S. (2003) Applied environmental economics. A GIS approach to cost-benefit analysis. Cambridge University Press, 339 p. DOI: 10.1017/CBO9780511493461.
9.   Billaud O., Soubeyrand M., Luque S., Lenormand M. (2020) Comprehensive decision-strategy space exploration for efficient territorial planning strategies. Computers, Environment and Urban Systems, no. 83, DOI: 10.1016/j.compenvurbsys.2020.101516.
10.   Clarke K. C., Hoppen S., Gaydos L. (1997) A self-modifying cellular automaton model of historical urbanization in the San Francisco bay area. Environment and Planning B: Planning and Design, no. 24 (2), pp. 247–261. DOI: 10.1068/b240247.
11.   Egoh B., Reyers B., Rouget M., Richardson D. M., Le Maitre D. C., van Jaarsveld A. S. (2008) Mapping ecosystem services for planning and management. Agriculture, Ecosystems and Environment, no. 127 (1–2), pp. 135–140. DOI: 10.1016/j.agee.2008.03.013.
12.   Fisher B., Turner R. K., Morling P. (2009) Defining and classifying ecosystem services for decision making. Ecological Economics, no. 68 (3), pp. 643–653. DOI: 10.1016/j.ecolecon.2008.09.014.
13.   Gjestland A., Thorsen I., Ubøe J. (2006) Some aspects of the intraregional spatial distribution of local sector activities. Annals of Regional Science, no. 40 (3), pp. 559–582. DOI: 10.1007/s00168-006-0073-7.
14.   Han Z., Jiao S., Zhang X., Xie F., Ran J., Jin R., Xu S. (2021) Seeking sustainable development policies at the municipal level based on the triad of city, economy and environment: Evidence from Hunan Province, China. Journal of Environmental Management, no. 290, DOI: 10.1016/j.jenvman.2021.112554.
15.   Hanink D. M. (1997) Principles and applications of economic geography: Economy, policy, environment. Wiley, New York, 495 p.
16.   Hao L., Zhu Q. (2015) Spatial structure of regional economic development in Henan Province, China. Recent Developments in Chinese Urban Planning: Selected Papers from the 8th International Association for China Planning Conference (Guangzhou, China, June 21–22, 2014), pp. 169–181. DOI: 10.1007/978-3-319-18470-8_11.
17.   Hotelling H. (1929) Stability in Competition. Economic Journal, no. 39 (153), pp. 41–57.
18.   Kliskey A. D. (1995) The role and functionality of GIS as a planning tool in natural-resource management. Computers, Environment and Urban Systems, no. 19 (1), pp. 15–22. DOI: 10.1016/0198-9715(94)00029-8.
19.   Li X., Yeh A.G.-O. (2000) Modelling sustainable urban development by the integration of constrained cellular automata and GIS. International Journal of Geographical Information Science, no. 14 (2), pp. 131–152. DOI: 10.1080/136588100240886.
20.   Li Z., Jiao L., Zhang B., Xu G., Liu J. (2021) Understanding the pattern and mechanism of spatial concentration of urban land use, population and economic activities: a case study in Wuhan, China. Geospatial Information Science, no. 24 (4), pp. 678–694. DOI: 10.1080/10095020.2021.1978276.
21.   Mohammadi M., Sahebgharani A., Malekipour E. (2013) Urban growth simulation through cellular automata (CA), analytic hierarchy process (AHP) and GIS; case study of 8th and 12th municipal districts of Isfahan. Geographia Technica, no. 18 (2), pp. 7–70.
22.   Musikhin I., Karpik A. (2023) Use of GIS technology and cellular automata for modeling multiple socio-economic scenarios of regional spatial development and inter-regional cooperation. Geo-spatial Information Science, no. 26 (1), pp. 71–93. DOI: 10.1080/10095020.2023.2182237.
23.   Myadzelets A. V. (2018) Role of territorial remoteness, economic and social factors in develop-ment of Siberian and northern regions of Russia. Paper presented at the IOP Conference Series: Earth and Environmental Science, no. 190 (1), pp. 012060. DOI: 10.1088/1755-1315/190/1/012060.
24.   Pacuk M., Palmowski T., Tarkowski M. (2018) The emergence of Baltic Europe: An overview of polish research on regional integration. Quaestiones Geographicae, no. 37 (2), pp. pp 47–60. DOI: 10.2478/quageo-2018-0013.
25.   Saganeiti L., Mustafa A., Teller J., Murgante B. (2021) Modeling urban sprinkling with cellular automata. Sustainable Cities and Society, no. 65, pp. 102586. DOI: 10.1016/j.scs.2020.102586.
26.   Seliverstov V. E., Melnikova L. V., Kolomak E. A., Kryukov V. A., Suslov V. I., Suslov N. I. (2019) Spatial Development Strategy of Russia: Expectations and Realities. Regional Research of Russia, no. 9 (2), pp. 155–163. DOI: 10.1134/S2079970519020114.
27.   Stead D. (2021) Conceptualizing the policy tools of spatial planning. Journal of Planning Literature, no. 36 (3), pp. 297–311. DOI: 10.1177/0885412221992283.
28.   Von Neumann J. (1966) Theory of Self-Reproducing Automata. University of Illinois Press, Urbana, 388 p.
29.   Wallace K. J. (2007) Classification of ecosystem services: Problems and solutions. Biological Conservation, no. 139 (3–4), pp. 235–246. DOI: 10.1016/j.biocon.2007.07.015.
30.   Wang Y. (2022) Environmental Economic Decision Support Information System Based on GIS. Cyber Security Intelligence and Analytics. CSIA 2022. Lecture Notes on Data Engineering and Communications Technologies, no. 123, pp. 184–191. DOI: 10.1007/978-3-030-96908-0_23.
31.   Yang Z. S., Sliuzas R., Cai J. M., Ottens H. F. L. (2012) Exploring Spatial Evolution of Economic Clusters: A Case Study of Beijing. International Journal of Applied Earth Observations and Geoinformation, no. 19, pp. 252–265.
32.   Yu J., Bian F., Peterson J., Li P. (2005) Interrelations between socio-economic development and environmental quality: a simulation integrating system dynamics models with GIS. Geo-spatial Information Science, no. 8 (3), pp. 176–182. DOI: 10.1007/BF02826816.
33.   Zeng X., Xiang H., Xue Y., Su Y., Tong Y., Mao Z. (2021) A scenario-based optimization frame to adjust current strategy for population-economy-resource-environment harmony in an urban agglomeration, China. Sustainable Cities and Society, no. 67, DOI: 10.1016/j.scs.2021.102710.
34.   Zhang J., Wang Q., Xia Y., Furuya K. (2022) Knowledge map of spatial planning and sustainable development: A visual analysis using CiteSpace. Land, no. 11 (3), pp. 331. DOI: 10.3390/land11030331.
Citation:
Musikhin I.A., 
Opritova O.A., 
Taranenko S. V., 
(2023) Technology of scenario-based spatial analysis: planning regional economic development (on the example of Novosibirsk region). Geodesy and cartography = Geodezia i Kartografia, 84(11), pp. 18-30. (In Russian). DOI: 10.22389/0016-7126-2023-1001-11-18-30