UDC: 
DOI: 
10.22389/0016-7126-2023-992-2-2-11
1 Sharafutdinova A.A.
2 Bryn M.Ya.
Year: 
№: 
992
Pages: 
2-11

Petersburg State Transport University

1, 
2, 
Abstract:
The method of point clouds registration using scanning points based on an iterative closest points’ algorithm is actively researched in the terrestrial laser scanning practice. One of this method’s tasks is calculating the datum transformation optimal values: three rotation angles, three translation parameters, and a scale factor. A way of calculating it based on the Broyden-Fletcher-Goldfarb-Shanno numerical optimization method has been developed to solve the matter. The advantage is absence of need for direct calculating the Hesse matrix containing the second derivatives. Within the framework of the developed methodology the following elements are proposed: pre-optimization based on two-point model mass centres; calculation of the target function value and the target function gradient on iteration through the vectoring operator; finding step lengths under strong Wolf Conditions; plotting to determine the optimal step length on iteration; retrying the process until the quotient of the difference between the values of the target function on two extreme iterations by the value of the target edge repetition function takes the value that satisfies the given accuracy. The conditions on which the positive definiteness of the Hesse matrix is preserved are explained, and it is the main point of the Broyden-Fletcher-Goldfarb-Shanno method for the correct calculation of the transformation datum. The algorithm was implemented in the Mathcad software environment to test the developed method. As a result, the superlinear convergence and self-correcting properties of the developed technique were noted.
References: 
1.   Abramov A. I., Abramov I. V., Mazitov T. A. Modifikatsiya algoritma ICP putem vnedreniya koeffitsienta usileniya dlya uskoreniya sovmeshcheniya dvumernykh oblakov tochek. Intellektual'nye sistemy v proizvodstve, 2016, no. 2 (29), pp. 4–9.
2.   Afonin D.A., Bogomolova N.N., Bryn M.Ya., Nikitchin A.A. (2020) Experience in the use of ground-based laser scanning at inspecting engineering structures. Geodezia i Kartografia, 81(4), pp. 2-8. (In Russian). DOI: 10.22389/0016-7126-2020-958-4-2-8.
3.   Kanashin N.V., Stepanov D.I. (2012) Recent developments in data processing of ground-based laser scanning, and possible solutions. Geodezia i Kartografia, (7), pp. 24-28.
4.   Mitsel' A. A., Romanenko V. V., Gribanova E. B. Metody optimizatsii. Tomsk: FDO, TUSUR, 2018, 451 p.
5.   Neiman Yu.M., Sugaipova L.S. (2022) On the coordinate systems transformation. Geodezia i Kartografia, 83(9), pp. 21-29. (In Russian). DOI: 10.22389/0016-7126-2022-987-9-21-29.
6.   Oskorbin N.M., Sukhanov S.I. (2011) Parameter estimation of direct and inverse transformation formulas of spatial coordinates. Geodezia i Kartografia, 72(6), pp. 26-29.
7.   Popova T. M. Metody bezuslovnoi optimizatsii. Teksty lektsii. Khabarovsk: Izd-vo Tikhookean. gos. un-ta, 2013, 76 p.
8.   Fikhtengol'ts G. M. Kurs differentsial'nogo i integral'nogo ischisleniya. Moskva: FIZMATLIT, 2003, 3 Vol. 1, 680 p.
9.   Sharafutdinova A. A. Primenenie iteratsionnogo metoda chislennoi optimizatsii dlya resheniya zadachi vzaimnogo orientirovaniya dannykh nazemnogo lazernogo skanirovaniya. Nauka. Tekhnika. Tekhnologii (politekhnicheskii vestnik), 2022, no. 1, pp. 214–217.
10.   Shul'ts R. V. Nazemnoe lazernoe skanirovanie v zadachakh inzhenernoi geodezii. Kishinev: Palmarium Academic Publishing, 2013, 348 p.
11.   Yunusov A.G., Jdeed A.J., Begliarov N.S., Elshewy M.A. (2020) Assessment of automatic segmentation accuracy with various point cloud density. Geodezia i Kartografia, 81(7), pp. 47-55. (In Russian). DOI: 10.22389/0016-7126-2020-961-7-47-55.
12.   Besl P.J., McKay N.D. (1992) A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 14, no. 2, pp. 239–356.
13.   Eckart B., Kim K., Kautz J. (2018) HGMR: Hierarchical Gaussian Mixtures for Adaptive 3D Registration. 15th European Conference, Munich, Germany, September 8–14, 2018. Proceedings, XV. pp. 730–746. DOI: 10.1007/978-3-030-01267-0_43.
14.   Fletcher R. (1988) Practical methods of optimization. Wiley, New York, 456 p.
15.   He Y., Liang B., Yang J., Li S. (2017) An Iterative Closest Points Algorithm for Registration of 3D Laser Scanner Point Clouds with Geometric Features. Sensors, Volume 17, no. 8, pp. 1862. DOI: 10.3390/s17081862.
16.   Li P., Wang R., Wang Y., Tao W. (2020) Evaluation of the ICP Algorithm in 3D Point Cloud Registration. IEEE Access, no. 8, pp. 68030–68048. DOI: 10.1109/ACCESS.2020.2986470.
17.   Nocedal J., Wright S. (2006) Numerical optimization. Springer, New York, 683 p.
18.   Yang Q., An Y., Yang J. (2016) Improved Algorithm of Iterative Closest Point Based on the Unit Quaternion. Microelectronics and Computer, Volume 33, no. 3, pp. 111–115.
19.   Zhou W., Chen G., Du S., Li F. (2016) An improved iterative closest point algorithm using clustering. Laser and Optoelectronics Progress, Volume 53, no. 5, pp. 51202.
Citation:
Sharafutdinova A.A., 
Bryn M.Ya., 
(2023) Point cloud registration using the quasi-Newton method. Geodesy and cartography = Geodezia i Kartografia, 84(2), pp. 2-11. (In Russian). DOI: 10.22389/0016-7126-2023-992-2-2-11
Publication History
Received: 24.11.2022
Accepted: 27.02.2023
Published: 20.03.2023

Content

2023 February DOI:
10.22389/0016-7126-2023-992-2