1 Latkin V.A.

Altai State University

At present, the use of digital technologies is becoming increasingly relevant in all fields of anthropogenic activity. In agriculture, an important area of digitalization is precision farming. In this case, the method of analyzing remote sensing data in geoinformation systems is of great importance; it enables identifying various parameters of agricultural crops (indices of vegetation, moisture availability, etc.) at processing. Therefore, it is important to develop a computer technology for manipulating the mentioned information and creating digital maps and models of the territory based on it. This requires high-quality work at the available satellite imagery materials. The author considers the course of determining the vegetation cover water indices in the ENVI software package using satellite images of the Landsat 7–9 survey systems. Based on the results of the calculation, digital 2D maps of the object under study were compiled, a GIS project (database) was developed, and a 3D elevation model was created. The obtained materials are intended for the analysis of natural and anthropogenic features, as well as for assessing the moisture content of the study object’s territory vegetation cover.
1.   Volobueva T. A. IT-tekhnologii v sel'skom khozyaistve: perspektivy i problemy ispol'zovaniya. Evraziiskoe Nauchnoe Ob"edinenie, 2020, no. 8-4 (66), pp. 193–196.
2.   Mel'nikova K. M. Tsifrovizatsiya sel'skogo khozyaistva. Nauchnyi zhurnal molodykh uchenykh, 2022, no. 1 (26), pp. 116–122.
3.   Morozova V. A. Raschet indeksov dlya vyyavleniya i analiza kharakteristik vodnykh ob"ektov s pomoshch'yu dannykh distantsionnogo zondirovaniya. Sovremennye problemy territorial'nogo razvitiya, 2019, no. 2, pp. 1–11.
4.   Sutyrina E. N. Distantsionnoe zondirovanie Zemli. Irkutsk: Izd-vo IGU, 2013, 165 p.
5.   Khabarov D. A., Adiev T. S., Popova O. O., Chugunov V.A., Kozhevnikov V. A. Analiz sovremennykh tekhnologii distantsionnogo zondirovaniya Zemli. Moskovskii ekonomicheskii zhurnal, 2019, no. 1, pp. 181–190.
6.   Cherepanov A. S., Druzhinina E. G. Spektral'nye svoistva rastitel'nosti i vegetatsionnye indeksy. Geomatika, 2009, no. 3, pp. 28–32.
7.   Calders K., Phinn S., Ferrari R., Leon J., Armston J., Asner G. P., Disney M. (2020) 3D Imaging Insights into Forests and Coral Reefs. Trends in Ecology and Evolution, Volume 35, no. 1, pp. 6–9. DOI: 10.1016/j.tree.2019.10.004.
8.   Chen Z., Xu B., Devereux B. (2014) Urban landscape pattern analysis based on 3D landscape models. Applied Geography, no. 55, pp. 82–91.
9.   Domingo G. A., Claridades A. R. C., Tupas M. E. A. (2018) Unmanned aerial vehicle (UAV) survey-assisted 3D mangrove tree modeling. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences – ISPRS Archives, no. 42, 4/W9, pp. 123–127. DOI: 10.5194/isprs-archives-XLII-4-W9-123-2018.
10.   D’Urban Jackson T., Williams G. J., Walker-Springett G., Davies A. J. (2020) Three-dimensional digital mapping of ecosystems: a new era in spatial ecology. Proceedings of the Royal Society B: Biological Sciences, no. 287, DOI: 10.1098/rspb.2019.2383.
11.   Hidayat I., Siwondo R., Suangga M., Aufar C. (2021) Pahlevi Modeling existing buildings three-dimensional (3D) using unmanned aerial vehicles: A study case in Binus Syahdan Campus Building. IOP Conference Series: Earth and Environmental Science, Volume 794, no. 1, pp. 012032.
12.   Wu Q., Guo F., Li H., Kang J. (2017) Measuring landscape pattern in three dimensional space. Landscape and Urban Planning, no. 167, pp. 49–59.
Latkin V.A., 
(2023) Application of digital technologies to determine the properties of vegetation cover in agriculture. Geodesy and cartography = Geodezia i Kartografia, 84(4), pp. 20-27. (In Russian). DOI: 10.22389/0016-7126-2023-994-4-20-27
Publication History
Received: 23.01.2023
Accepted: 19.04.2023
Published: 20.05.2023


2023 April DOI: