DOI: 
10.22389/0016-7126-2023-994-4-28-38
1 Rybin I.V.
2 Sheverdyaev I.V.
Year: 
№: 
994
Pages: 
28-38

Southern scientific center of the Russian Academy of Sciences

1, 
2, 
Abstract:
The possibility of studying morphometric parameters of the Earth’s topographic surface using the ArcMap and digital elevation model SRTM3 with a resolution of 90 m to determine neotectonic structures, as well as associated ore clusters and deposits was considered using the method offered by V. P. Filosofov. The authors describe the technology of creating base and vertex surfaces for thalwegs and watersheds of different orders, with the subsequent subtraction of the former from the latter within one order to determine the amount of erosion cut (relief energy). As the object of the study, the Dnieper-Donets aulacogen was chosen, starting west of Kharkov and stretching to the Caspian Sea, wide from Rostov-on-Don to Millerovo. It was noted that the higher the potential relief energy is, the more powerful surface processes will be manifested in the form of active destruction of previously buried (hidden) geological structures with valuable components, which are later to be distributed throughout the territory. This study is proposed to be used to predict and search for latent mineralization; it enables identifying the root source of demolition, rational arranging geological work, and thereby reduces their cost.
The reported study was carried out within framework of the state tasks of SSC RAS, project state registration is № 122020100352-6 and 122103100027-3
References: 
1.   Geograficheskii entsiklopedicheskii slovar'. Ponyatiya i terminy. Moskva: Sovetskaya entsiklopediya, 1988, 456 p.
2.   Ermolaev O. P., Semenov F. V. Ispol'zovanie tsifrovykh modelei rel'efa dlya morfometricheskogo analiza tektonicheskikh struktur i poiska rossypei allyuvial'nogo genezisa. Geografiya i prirodnye resursy, 2014, no. 1, pp. 142–147.
3.   Zykov D. S., Poleshchuk A. V., Kolodyazhnyi S. Yu. Priznaki unasledovannogo neotektonicheskogo razvitiya raiona Mologo-Sheksninskoi depressii. Geomorfologiya, 2021, no. 4, pp. 42–52.
4.   Koshkarev A. V. Istochniki dannykh dlya tsifrovogo modelirovaniya rel'efa v geomorfologicheskikh issledovaniyakh. Materialy XXXVI Plenuma Geomorfologicheskoi komissii RAN, Barnaul: Izd-vo AltGU, 2018, pp. 201–207.
5.   Kuz'min S. B. Vidy i zadachi geomorfologicheskogo raionirovaniya. Geomorfologiya, 2021, no. 1. – С. 61–74,
6.   Pavlova A. I. Morfometricheskii analiz rel'efa s pomoshch'yu GIS. Interekspo GEO-Sibir', 2013, Vol. 3, no. 4, pp. 166–169.
7.   Povalyaev N. R. Sovremennaya morfometriya reki Kamenka – pritoka reki Don. Materialy X Vseross. nauch.-prakt. konf. «Geoinformatsionnoe kartografirovanie v regionakh Rossii», Voronezh: Nauchnaya kniga, 2018, pp. 125–128.
8.   Ukraintsev V. Yu. Sledy moshchnogo rechnogo stoka v dolinakh rek basseina Volgi v pozdnevaldaiskuyu epokhu. Geomorfologiya, 2022, no. 1, pp. 26–34. DOI: 10.31857/S0435428122010126.
9.   Kharchenko S. V. Novye zadachi morfometrii rel'efa i avtomatizirovannye morfologicheskie klassifikatsii v geomorfologii. Geomorfologiya, 2020, no. 1, pp. 3–21. DOI: 10.31857/S043542812001006X.
10.   Chernova I. Yu., Khasanov D. I., Zharkov I. Ya., Bil'danov R. R., Kashirina T. S. Obnaruzhenie i issledovanie zon noveishikh dvizhenii zemnoi kory instrumentami GIS. ArcReview, 2005, no. 1 (32), pp. 6–7.
11.   Chetvertakov I. V., Ivanov A. V., Mikheeva E. A., Chikisheva T. A., Yakich T. Yu. Perspektivy korennoi zolotonosnosti yuga Sibirskoi platformy po rezul'tatam izucheniya morfo-geokhimicheskikh osobennostei shlikhovogo zolota. Otechestvennaya geologiya, 2021, no. 1, pp. 97–114. DOI: 10.47765/0869-7175-2021-10008.
12.   Bugnicourt P. et al. (2018) Using textural analysis for regional landform and landscape mapping, Eastern Guiana Shield. Geomorphology, no. 317, pp. 23–44. DOI: 10.1016/j.geomorph.2018.03.017.
13.   Burningham H., French J. (2017) Understanding coastal change using shoreline trend analysis supported by cluster-based segmentation. Geomorphology, no. 282, pp. 131–149. DOI: 10.1016/j.geomorph.2016.12.029.
14.   Gilbert J. T., Macfarlane W. W., Wheaton J. M. (2016) The valley bottom extraction tool (V-BET): A GIS tool for delineating valley bottoms across entire drainage networks. Computers and Geosciences, no. 97, pp. 1–14. DOI: 10.1016/j.cageo.2016.07.014.
15.   Hengl T., Reuter H.I. (2007) Geomorphometry: concepts, software, applications. Luxembourg: Office for Official Publications of 24 the Europian Communities. 535 p.
16.   Li W., Hsu C. Y. (2018) Automated terrain feature identification from remote sensing imagery: a deep learning approach. International Journal of Geographical Information Science, pp. 1–24. DOI: 10.1080/13658816.2018.1542697.
17.   Pipaud I., Lehmkuhl F. (2017) Object-based delineation and classification of alluvial fans by application of mean-shift segmentation and support vector machines. Geomorphology, no. 293, pp. 178–200. DOI: 10.1016/j.geomorph.2017.05.013.
Citation:
Rybin I.V., 
Sheverdyaev I.V., 
(2023) Morphometric studies through spatial analysis using the example of the Dnieper-Donets aulacogen. Geodesy and cartography = Geodezia i Kartografia, 84(4), pp. 28-38. (In Russian). DOI: 10.22389/0016-7126-2023-994-4-28-38
Publication History
Received: 22.03.2022
Accepted: 26.04.2023
Published: 20.05.2023

Content

2023 April DOI:
10.22389/0016-7126-2023-994-4